Forgot password
 Register account
View 256|Reply 1

[不等式] 求证$a^{917}+b^{917}\geqslant 2^{-916}$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2024-9-15 22:24 |Read mode
Last edited by hbghlyj 2025-5-27 03:45若对任意正实数 $a,b$ 满足 $a+b=1$,求证:$a^{917}+b^{917}\geqslant 2^{-916}$.
isee=freeMaths@知乎

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2024-9-16 02:12
$p=917, q=\frac{1}{1-\frac{1}{917}}=\frac{917}{916}$

赫尔德不等式:
\[a\cdot 1+b\cdot 1\le(a^p+b^p)^{\frac{1}{p}}\cdot(1^q+1^q)^{\frac{1}{q}}\]
\[1=a+b\le(a^{917}+b^{917})^{\frac{1}{917}}\cdot 2^{\frac{916}{917}}\]
\[a^{917}+b^{917}\ge 2^{-916}\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:15 GMT+8

Powered by Discuz!

Processed in 0.017905 seconds, 47 queries