Forgot password?
 Create new account
View 134|Reply 1

[不等式] 求证$a^{917}+b^{917}\geqslant 2^{-916}$

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-9-15 22:24:55 |Read mode
若对任意正实数 a,b 满足 $a+b=1$,求证:$a^{917}+b^{917}\geqslant 2^{-916}$.

PS:祝福中秋节~
isee=freeMaths@知乎

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-9-16 02:12:28
$p=917, q=\frac{1}{1-\frac{1}{917}}=\frac{917}{916}$

赫尔德不等式:
\[a\cdot 1+b\cdot 1\le(a^p+b^p)^{\frac{1}{p}}\cdot(1^q+1^q)^{\frac{1}{q}}\]
\[1=a+b\le(a^{917}+b^{917})^{\frac{1}{917}}\cdot 2^{\frac{916}{917}}\]
\[a^{917}+b^{917}\ge 2^{-916}\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list