Forgot password?
 Register account
View 267|Reply 1

[不等式] 求证$a^{917}+b^{917}\geqslant 2^{-916}$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2024-9-15 22:24 |Read mode
Last edited by hbghlyj 2025-5-27 03:45若对任意正实数 $a,b$ 满足 $a+b=1$,求证:$a^{917}+b^{917}\geqslant 2^{-916}$.
isee=freeMaths@知乎

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2024-9-16 02:12
$p=917, q=\frac{1}{1-\frac{1}{917}}=\frac{917}{916}$

赫尔德不等式:
\[a\cdot 1+b\cdot 1\le(a^p+b^p)^{\frac{1}{p}}\cdot(1^q+1^q)^{\frac{1}{q}}\]
\[1=a+b\le(a^{917}+b^{917})^{\frac{1}{917}}\cdot 2^{\frac{916}{917}}\]
\[a^{917}+b^{917}\ge 2^{-916}\]

Mobile version|Discuz Math Forum

2025-6-5 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit