Forgot password?
 Create new account
View 190|Reply 4

Laurent级数 疑问

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-5-18 19:44:22 |Read mode
Theorem 9.16.
圆环 $A=\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$
点 $w∈A$
因为$w$在$\gamma_R$内,在$\gamma_r$外:
$\gamma_R$关于$w$的环绕数为$1$,
$\gamma_r$关于$w$的环绕数为$0$,
那么右图下边的公式第2个积分$\int_{\gamma_{r}} \frac{f(z)}{z-w} d z$为0,
既然是0为什么还要带着它
Screenshot 2023-05-18 at 12-40-26 complex.pdf.png

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-18 19:53:34
懂了, 这里的关于$\Gamma=\gamma_R\cup\gamma_r^{-1}$的柯西积分公式不是由$\gamma_R$和$\gamma_r^{-1}$简单地加得的:
用$\Gamma$是为了适用于$\gamma_r$内部有奇点的情况(因为$\gamma_r$内部在$\Gamma$外部)
  • 若$\gamma_r$内的奇点都是可去的,确实像1#所说的那样,可由$\gamma_R$和$\gamma_r^{-1}$的柯西积分公式相加得,而且关于$\gamma_r$的环绕数为0,所以第2个积分为0
  • 否则不能成立$\gamma_R$和$\gamma_r^{-1}$的柯西积分公式

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-18 20:00:37

一致收敛推出唯一性

Last edited by hbghlyj at 2023-5-18 23:53:00关于这个证明的后半段
Screenshot 2023-05-18 at 12-58-17 complex.pdf.png
若$\sum_{n\in\Bbb Z}c_nz^n$与$\sum_{n\in\Bbb Z}d_nz^n$都一致收敛到$f(z)$, 则$c_n=d_n$.
证明中用到了一致收敛:proofwiki.org/wiki/Derivative_of_Uniform_Limi … f_Analytic_Functions
\[|f'_n(w)−f'(w)|=\frac 1 {2 \pi} \abs{\int_{\partial D_r(w)} \frac {f_n(z) - f(z)} {(z - w)^2} \rmd z}\le\frac {2 \pi r} {2 \pi} \sup_{z \mathop \in \partial D_r(w)} \frac {\abs{f_n(z)- f(z)} } {r^2}\]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-19 06:14:35
Last edited by hbghlyj at 2023-5-19 23:19:00$\exp(z^{-1})=\sum_{n=0}^\infty{z^{-n}\over n!}$是否一致收敛

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-19 14:53:52
hbghlyj 发表于 2023-5-19 06:14
$\exp(z^{-1})=\sum_{n=-\infty}^0{z^{-n}\over n!}$是否一致收敛
$(-|n|)!$ 需要定义.

以及, 内闭一致收敛就足够了.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list