Forgot password?
 Create new account
View 175|Reply 4

两个$(1+x)^{1/2}$相乘

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-5-24 17:10:07 |Read mode
kuing 发表于 2022-9-12 18:25
那就归纳法呗,假设
\[\frac1{(1-x)^n}=1+nx+C_{n+1}^2x^2+C_{n+2}^3x^3+\cdots,\]
假设 $$(1+x)^{1/2}=\sum_{k=0}^\infty a_kx^k$$ 直接代入$2x+x^2$得 \begin{equation}\label1 (1+(2x+x^2))^{1/2}=\sum_{k=0}^\infty a_k(2x+x^2)^k\end{equation} 相乘得\begin{equation}\label2 (1+(2x+x^2))^{1/2}=(1+x)^{1/2}(1+x)^{1/2}=\sum_{i=0}^\infty(\sum_{k=0}^ia_ka_{i-k})x^i \end{equation} 这2个都等于$1+x$
\eqref{1}收敛域$\abs{2x+x^2}<1\iff x\in(-1-\sqrt2,-1+\sqrt2)$
\eqref{2}收敛域$\abs x<1\iff x\in(-1,1)$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-24 17:16:39

这两个区间互不包含

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-24 17:34:21
Last edited by hbghlyj at 2023-5-24 22:32:00复数上画出$\abs{2z+z^2}<1$
WolframAlpha
Untitled.gif
$-1$不是$\abs{2z+z^2}<1$的内点(以$-1$为中心作圆无法在区域内部)
是否存在$f(z)$在$\abs z<1$收敛, 但$f(2z+z^2)$在$-1$不收敛

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-24 17:44:43
hbghlyj 发表于 2023-5-24 10:34
是否存在$f(z)$在$\abs z<1$收敛, 但$f(2z+z^2)$在$-1$不收敛
$\log(2z+z^2)$
Series expansion at $z=-1$
WolframAlpha
  1. Series[Log[z (2 + z)], {z, -1, 7}]
Copy the Code
输出
  1. Piecewise[{{Conjugate[I Pi - (1 + z)^2 - (1 + z)^4/2 - (1 + z)^6/3 + O[1 + z]^7], Im[(1 + z)^2] < 0}}, I Pi - (1 + z)^2 - (1 + z)^4/2 - (1 + z)^6/3 + O[1 + z]^7]
Copy the Code
即\begin{cases} -1/3 (z^* + 1)^6 - 1/2 (z^* + 1)^4 - (z^* + 1)^2 - i π & \Im((z + 1)^2)<0\\
-1/3 (z + 1)^6 - 1/2 (z + 1)^4 - (z + 1)^2 + i π &\text{ (otherwise)}
\end{cases}发现有2个分支

手机版Mobile version|Leisure Math Forum

2025-4-20 22:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list