Forgot password?
 Create new account
View 109|Reply 3

两个open mapping theorem有关吗

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-5-24 19:29:14 |Read mode
Wikipedia有3个open mapping theorem, 其中2个是有页面的:
Open mapping theorem (functional analysis)
Open mapping theorem (complex analysis)没有中文页面, 有日文的開写像定理 (複素解析)
它们有关吗

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-24 19:29:51
open mapping theorem(complex analysis)的证明中:
Assume $f : U →\mathbb C$ is a non-constant holomorphic function and $U$ is a domain of the complex plane.
⋯⋯
Consider an arbitrary $w_0$ in $f(U)$. Then there exists a point $z_0$ in $U$ such that $w_0 = f(z_0)$. Since $U$ is open, we can find $d > 0$ such that the closed disk $B$ around $z_0$ with radius $d$ is fully contained in $U$.
⋯⋯
$e$ is the minimum of $|g(z)|$ for $z$ on the boundary of $B$ and $e > 0$.
Denote by $D$ the open disk around $w_0$ with radius $e$.
⋯⋯
This means that the disk $D$ is contained in $f(B)$.
The image of the ball $B$, $f(B)$ is a subset of the image of $U$, $f(U)$.
⋯⋯
$w_0=f(z_0)$是$f(U)$中的任意点,以$z_0$为中心作闭圆盘$B$包含于$U$,
$e=\min_{\partial B}\abs{g(z)}>0$,以$w_0$为中心$e$为半径作开圆盘$D$.
那么$D$是$f(\partial B)$内的以$w_0$为中心的最大的开圆盘.
最后证明了$D\subseteq f(B)$.
我有个问题:是否有$\partial f(B)=f(\partial B)$? 是否有$f(\mathring B)=\mathring{f(B)}$? (此处\mathring表示"内部")

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-24 20:00:26
复变和泛函的开映射定理没什么关联, 并且完全可以用其他名字区分. 拓扑群和泛函的开映射定理挺像的, 证明基本都用了 BTC.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-24 20:05:47
hbghlyj 发表于 2023-5-24 19:29
在open mapping theorem(complex analysis)的证明中:
$w_0=f(z_0)$是$f(U)$中的任意点,以$z_0$为中心作闭圆 ...
考虑 $f$ 单射的话, 那就是 Carathéodory 定理. $f$ 不是单射的话反例很多, 随便找一个覆叠映射构造就行.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list