Forgot password?
 Register account
View 248|Reply 2

[几何] 求教一道初中反比例函数与矩形结合的初中解法

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2023-5-31 22:10 |Read mode
220926c2w2d2d2dkoi0dw2.jpg
求教第16题

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2023-6-1 14:58
就是按你这样硬算,继续你的结论,由$\vv{BC}=\vv{AD}$,可得$(-3a,c)=(d-a,\frac{k}{d}-\frac{k}{a})$,得到$d=-2a,c=-\frac{3k}{2a}$,
由$\vv{AB}\cdot\vv{BC}=0=(2a,-\frac{k}{a})\cdot (3a,\frac{3k}{2a})$(初中用勾股或$k_1\cdot k_2=-1$),得到$k=-2a^2$,就一个面积还没用了,未知数也仅留下a了.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-6-1 15:06

作 `AG\perp x` 轴于 `G`,作 `DH\perp y` 轴于 `H`,设 `B(b,0)`, `C(0,c)`, `A(a,k/a)`, `D(d,k/d)`,则有
\begin{align*}
AG&=CH,\\
DH&=BG,\\
\frac{AG}{DH}&=\frac{OB}{OC},
\end{align*}

\begin{align*}
\frac ka&=\frac kd-c,&&(1)\\
d&=a-b,&&(2)\\
\frac{\frac ka}d&=\frac bc,&&(3)
\end{align*}
由式 (1)(2) 得
\[k=\frac{acd}{a-d}=\frac{acd}b,\]
由式 (3) 得
\[k=\frac{abd}c,\]
从而 `b=c`,即整个图形是关于直线 `y=x` 对称的。

若延长 `BA` 交 `y` 轴于 `E`,那么 `A`, `M` 就是 `BE` 的三等分点,下略。

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit