Forgot password?
 Create new account
View 8338|Reply 42

[几何] 初中难题

[Copy link]

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

APPSYZY Posted at 2017-12-7 22:49:11 |Read mode
2e0b35a8.png
能否推广到双曲线的一般情况?(以及椭圆、抛物线)

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2017-12-8 14:24:04
1、这个题初中能做?怎么做?
2、“推广”是什么意思?O是双曲线中心,抛物线连对称中心都没有。

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2017-12-8 19:43:51
回复 2# 游客
的确是2014年中考模拟卷的选择题,不知出题人的意图是什么,学生一般会猜线段在对称时最短,但是证明起来却不简单

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2017-12-18 22:49:53
求助。。。。。。

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-18 23:25:01
这题放到高中估计也很多人证不出来……

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-19 02:22:05
设 $A$, $B$ 两点的横坐标为 $a$, $b$,则两射线斜率为 $k_{OA}=\sqrt3/a^2$, $k_{OB}=\sqrt3/b^2$,于是由夹角为 $30\du$ 得
\begin{align*}
\frac{k_{OB}-k_{OA}}{1+k_{OA}k_{OB}}=\tan30\du=\frac{\sqrt3}3
&\iff3(a^2-b^2)=a^2b^2+3\\
&\iff3\left( \frac ab-\frac ba \right)=ab+\frac3{ab}, \quad(*)
\end{align*}
于是
\begin{align*}
AB^2&=(a-b)^2+\left( \frac{\sqrt3}a-\frac{\sqrt3}b \right)^2\\
&=(a-b)^2\left( 1+\frac3{a^2b^2} \right)\\
&=\left( \frac ab+\frac ba-2 \right)\left( ab+\frac3{ab} \right)\\
&=3\left( \sqrt{\left( \frac ab-\frac ba \right)^2+4}-2 \right)\left( \frac ab-\frac ba \right),
\end{align*}
令 $v=a/b-b/a$,由式 (*) 知 $v\geqslant 2/\sqrt3$,则
\[AB^2=3\bigl( \sqrt{v^2+4}-2 \bigr)v=f(v),\]
求导得\(\require{cancel}\)
\[\bcancel{
f'(v)=\frac{6\bigl( v^2+2-\sqrt{v^2+4} \bigr)}{\sqrt{v^2+4}}
=\frac{6(v^4+3v^2)}{\sqrt{v^2+4}\bigl( v^2+2+\sqrt{v^2+4} \bigr)}>0,
}\]
因为 $\sqrt{v^2+4}-2$ 恒正且递增,所以 $f(v)$ 递增,从而
\[f(v)\geqslant f\left( \frac2{\sqrt3} \right)=8-4\sqrt3=\bigl( \sqrt6-\sqrt2 \bigr)^2,\]
所以 $AB\geqslant \sqrt6-\sqrt2$,当 $a=\sqrt3$, $b=1$ 时取等,所以最小值就是 $\sqrt6-\sqrt2$。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-12-19 12:40:15
Last edited by isee at 2017-12-19 23:55:00回复 6# kuing


    你都动用导数了,,,,,,说明常规运算不是命题人的方向。。。我只是猜咯。。

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-12-19 16:46:17
Last edited by hbghlyj at 2025-3-22 23:19:30这题放在初中吧,我猜是让学生猜答案的,上极坐标吧,由直线方程 $\theta=\alpha$ 与双曲线方程 $r^2 \sin 2 \theta=$ $2 \sqrt{3}$ 联立得点 $A\left(\sqrt{\frac{2 \sqrt{3}}{\sin 2 \alpha}}, \alpha\right)$ 和 $B\left(\sqrt{\frac{2 \sqrt{3}}{\sin 2\left(\alpha+\frac{\pi}{6}\right)}}, \alpha+\frac{\pi}{6}\right)$ ,因此由余弦定理和二元均值不等式得
\[
\begin{aligned}
d^2 & =\frac{2 \sqrt{3}}{\sin 2 \alpha}+\frac{2 \sqrt{3}}{\sin 2\left(\alpha+\frac{\pi}{6}\right)}-\frac{2 \sqrt{3}}{\sqrt{\sin 2 \alpha \sin 2\left(\alpha+\frac{\pi}{6}\right)}} \cos \frac{\pi}{6} \\
& \geqslant \frac{4 \sqrt{3}-3}{\sqrt{\sin 2 \alpha \sin 2\left(\alpha+\frac{\pi}{6}\right)}} \geqslant \frac{2(4 \sqrt{3}-3)}{\sin 2 \alpha+\sin 2\left(\alpha+\frac{\pi}{6}\right)} \\
& =\frac{2(4 \sqrt{3}-3)}{2 \sin \left(2 \alpha+\frac{\pi}{6}\right) \cos \frac{\pi}{6}} \geqslant \frac{4(4-\sqrt{3})}{2 \sin \left(2 \alpha+\frac{\pi}{6}\right)} \geqslant 2(4-\sqrt{3})=2(\sqrt{3}-1)^2
\end{aligned}
\]
以上所有等号都只有在 $\alpha=\frac{\pi}{6}$ 时妈得,即 $\angle A O B$ 的平分线正好也是第一象限的平分线,答案选D.

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-19 17:19:51
回复 8# zhcosin

捕获.PNG 五笔党

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-12-19 17:30:04
回复 9# kuing
话说你那个单调性,似乎可以目测啊,两个正的增函数相乘,都不用求导了。。。

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-19 17:40:58
回复 10# zhcosin

噢对呵,俺笨死鸟

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-12-19 17:55:25
聪明一世,糊涂一时哎

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-19 18:28:46
已将求导划掉[得意]

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2017-12-19 22:58:39
回复 6# kuing
谢谢k神!

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2017-12-19 22:59:00
回复 8# zhcosin
谢谢zhcosin出手!!

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-19 23:37:48
回复 8# zhcosin

仔细看了下,$d^2=$ 右边的第三项分子应为 $4\sqrt3$ 吧,然而最终结果又没错?

后面也可以简单些,直接积化和差
\[\sin 2\alpha \sin 2(\alpha +30\du)=\frac {\cos 60\du-\cos (4\alpha +60\du)}2\leqslant\frac{\frac12+1}2= \frac 34,\]
当 $\alpha=30\du$ 取等。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-12-19 23:52:37
如图,由于$\angle AOB$为定值,$AB$最小等价于三角形$AOB$的外接圆$D$半径$r$最小.

h-l.png

取$AB$中点$E$,连接$OE$,$ED$,则$$r+\frac{\sqrt 3r}2=OD+DE\geqslant OE.$$

当点$D$落在$OE$上时,$r_{\min}=?$.(不想算)

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-12-20 00:02:14
回复 17# isee

但是 OE 并不是定值,不能由此说明 D 在 OE 上时 r 最小啊

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-12-20 00:08:27
回复 18# kuing

我也看到了。其实转化成E的轨迹了,应该也是对称的,有瑕疵。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-12-20 00:11:36
Last edited by isee at 2017-12-20 15:51:00
回复  isee

但是 OE 并不是定值,不能由此说明 D 在 OE 上时 r 最小啊
kuing 发表于 2017-12-20 00:02
如果能说明E的轨迹也是关于$y=x$对称的,最好是双曲线,则勉强可行。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list