Forgot password?
 Create new account
View 157|Reply 2

mma 给出太复杂的积分结果

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-6-3 05:23:25 |Read mode
Last edited by hbghlyj at 2023-6-3 08:10:00$a\inR,$$$I(a)=\int_{-\infty }^{\infty } \frac{\cos (a x)}{x^2+2 x+2} \, dx$$
  1. Integrate[Cos[a x]/(x^2 + 2 x + 2), {x, -Infinity, Infinity}, Assumptions -> a \[Element] Reals]
Copy the Code

Mathematica
  1. (1/(4 a))E^((-1-I) a) \[Pi] (-((1+E^(2 I a)) (-1+E^(2 a)) Abs[a])+a (-1+E^(2 I a)+E^(2 a)-E^((2+2 I) a)-2 (1+E^((2+2 I) a)) Ceiling[(\[Pi]-4 Arg[a])/(8 \[Pi])] Floor[(\[Pi]+Arg[a])/(2 \[Pi])]-2 Floor[(\[Pi]-4 Arg[a])/(8 \[Pi])] Floor[(\[Pi]+Arg[a])/(2 \[Pi])]-2 E^((2+2 I) a) Floor[(\[Pi]-4 Arg[a])/(8 \[Pi])] Floor[(\[Pi]+Arg[a])/(2 \[Pi])]+2 E^(2 I a) Floor[3/8-Arg[a]/(2 \[Pi])]+2 E^(2 a) Floor[3/8-Arg[a]/(2 \[Pi])]-2 E^(2 I a) Floor[(\[Pi]+Arg[a])/(2 \[Pi])] Floor[3/8-Arg[a]/(2 \[Pi])]-2 E^(2 a) Floor[(\[Pi]+Arg[a])/(2 \[Pi])] Floor[3/8-Arg[a]/(2 \[Pi])]+2 Ceiling[Arg[a]/(2 \[Pi])] ((-1+E^(2 I a)) (-1+E^(2 a))-(E^(2 I a)+E^(2 a)) Floor[3/8-Arg[a]/(2 \[Pi])])))
Copy the Code

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-3 05:24:02

通过计算留数

For $a>0$, by Jordan's lemma, the integral $\int{e^{iaz}\over z^2+2z+2}$ on semicircle contour $\to0$.
  1. Re[2Pi I Residue[Exp[I a x]/(x^2+2x+2),{x,-1+I}]]//ComplexExpand
Copy the Code

$I(a)=\pi e^{-a}\cos (a)$
So, for $a\inR$, $I(a)=\pi e^{-\abs a}\cos (a)$

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2023-8-22 17:18:28
Last edited by TSC999 at 2023-8-22 17:26:00用你的代码在我的 9.0 版本 MMA 上运行,结果是不用留数也行:
积分.png

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list