Forgot password
 Register account
View 254|Reply 3

[分析/方程] $\frac{\cosh ^{-1}(x)}{\sqrt{x-1}}$在0的级数

[Copy link]

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-6-11 07:35 |Read mode
$x\inC$\[\frac{\cosh ^{-1}(x)}{\sqrt{x-1}}=\sum _{n=0}^{\infty } \mathit{c}_n x^n\]其中$\mathit{c}_0=\frac{\pi }{2},\mathit{c}_1=\frac{\pi }{4}-1$
\[(2 n+1)^2 \mathit{c}_n=(-4 n-4) \mathit{c}_{n+1}+4 (n+1) (n+2) \mathit{c}_{n+2}\]
如何得到的呢

来自WolframAlpha
Untitled.gif

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-6-15 14:26
首先注意到 $(2n+1)^2c_n=4n(n-1)c_n+8nc_n+c_n$.

记 $[f]$ 为 $f(x)$ 在某定点 Taylor 展开的第 $k$ 项系数, 其中 $k$ 充分大. 那么待证明的结论即
$$
[4x^2f''+8xf'+f]=-4[f']+4[f''].
$$
从而存在常数 $A$ 与 $B$ 使得
$$
4(x^2-1)f''+4(2x+1)f'+f=A+Bx.
$$

Wolfram 说这是 $0$ 那就是 $0$ 吧.

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-6-15 14:38
Last edited by Czhang271828 2023-6-16 12:31此处 Taylor 级数的系数递推关系也是合乎情理的. 因为
\[
\mathrm{span}_{\mathbb F(x)}\{f,f',f'',\ldots \}=\mathrm{span}_{\mathbb F(x)}\{\sqrt{x-1}\cdot \cosh^{-1}(x), \sqrt{x+1}\}.
\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:03 GMT+8

Powered by Discuz!

Processed in 0.014508 seconds, 28 queries