Forgot password?
 Register account
View 242|Reply 1

1/(z-λ)^2求和

[Copy link]

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2023-7-7 01:50 |Read mode
维基百科:双周期函数
知乎:复变随记(九)椭圆函数双周期的由来(代码开源)

notes9.dvi的第1页读到:$$\sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{2}}\tag2$$the series above does not converge

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

 Author| hbghlyj Posted 2023-7-7 01:52
Last edited by hbghlyj 2023-7-7 02:12WolframAlpha算出$$\sum_{y=-∞}^∞ \frac1{(z-x - i y)^2} = π^2 \operatorname{csch}^2(π x - π z)$$那么$$\sum_{\lambda\in \Bbb Z[i ]}\frac1{(z-\lambda)^2}=\sum_{x=-∞}^∞ π^2\operatorname{csch}^2(π x -1)$$
代入$z=1/π$,WolframAlpha算出结果 = 7.71732
这说明(2)对于某些 z ∉ Λ 是收敛的所以不太理解1#引用的这句话.

MSE帖子的区别:它是在$\Bbb Z^+$求和,证明了收敛;而这里是在 $\Lambda=ℤ[i ]$ 求和,不知是否收敛⋯

Mobile version|Discuz Math Forum

2025-6-4 16:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit