Forgot password?
 Create new account
View 167|Reply 4

[数列] Polylog sums which evaluate to an integer

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-8-13 21:37:02 |Read mode
Last edited by hbghlyj at 2023-8-16 20:17:00For any $k\inZ$, $x\inZ$, show that $\displaystyle \sum_{n=1}^{\infty} n^{k-1} \frac{(x-1)^k}{x^n} \inZ$
E.g. $k = 15$, $x = 3$, the series evaluates to 696933753434112.

Comment

请添加中文标题  Posted at 2023-8-14 10:31

Related threads

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-8-13 22:37:14
Let $~p(n)=n^{k-1},~\deg(p(n))=k-1$

$\displaystyle f(n)
=\frac{p(n)}{1/x-1}+\frac{1}{(1/x-1)^2}\sum_{m=1}^{\deg(p)} \frac{ (-1)^m (1/x)^{m-1}}{(1/x-1)^{m-1}}\Delta^m(p(n))$
$\displaystyle =\frac{-xp(n)}{x-1}-\frac{x^2}{(x-1)^2}\sum_{m=1}^{k-1} \frac{ 1}{(x-1)^{m-1}}\Delta^m(p(n))$

$\displaystyle \sum_{n=1}^{\infty} n^{k-1} \frac{(x-1)^k}{x^n}
=-\frac{(x-1)^k}{x}f(0)$
$\displaystyle =(x-1)^{k-1}p(0)+x\sum_{m=1}^{k-1} (x-1)^{k-1-m}\Delta^m(p(0))$
$\displaystyle =x\sum_{m=1}^{k-1} (x-1)^{k-1-m}\Delta^m(p(0))$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-13 22:45:09
Sum[n^(k - 1) ((x - 1)^k/x^n),{n,1,oo}]$ = (x - 1)^k\text{Li}_{1 - k}\left(1\over x\right)$ when $\abs x>1$
$\text{Li}_n(x)$ is the polylogarithm function

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-8-14 08:52:16
wolframalpha唔撚識差分算子,冇見佢用過
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list