Forgot password
 Register account
View 141|Reply 1

PolyLog[z,-k]在1的留数

[Copy link]

3214

Threads

7830

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-1-2 05:38 |Read mode
Last edited by hbghlyj 2023-1-11 13:02
  1. Residue[Sum[n^2 z^n,{n,1,Infinity}],{z,1}]
  2. Residue[Sum[n^3 z^n,{n,1,Infinity}],{z,1}]
  3. Residue[Sum[n^4 z^n,{n,1,Infinity}],{z,1}]
  4. Residue[Sum[n^5 z^n,{n,1,Infinity}],{z,1}]
Copy the Code
输出$-1,1,-1,1$
猜测$k\in\Bbb N,\sum_{n=1}^\infty n^k z^n$在1的留数为$(-1)^{k-1}$

3214

Threads

7830

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-1-11 20:14
根据这帖7#
$M(t)=\frac{z \exp (t)}{1-z \exp (t)}$, 则$\sum_{n=1}^\infty n^kz^n=M^{(k)}(0)$
如何求在1的留数呢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 21:52 GMT+8

Powered by Discuz!

Processed in 0.056587 seconds, 26 queries