Forgot password
 Register account
View 335|Reply 12

[不等式] 求证不等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2023-8-28 21:47 |Read mode
当$p>1,n>2$时,试证明:$\dfrac{1}{n^p}<\dfrac{1}{p-1}(\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{n^{p-1}})$

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-8-28 21:49
点了两次,重发了。
如何删除呢?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-28 22:01
当主题还没有回复时可以自行删除,方法见:forum.php?mod=viewthread&tid=9112
所以你现在可以去另一个帖里把它删掉。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-28 22:05
1# 不等式的更一般形式见:forum.php?mod=viewthread&tid=4042

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-8-28 23:24
是不是这样:
forum.php?mod=viewthread&tid=4042
有$\dfrac{1}{(m-d)^a}-\dfrac{1}{(m+d)^a}>\dfrac{2da}{m^{a+1}}$.
令$m=n,d=1,a=p-1$,可得$\dfrac{2(p-1)}{n^p}<\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{(n+1)^{p-1}}$,即$\dfrac{2}{n^p}<\dfrac{1}{(p-1)}(\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{(n+1)^{p-1}})$。
又因为$\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{n^{p-1}}<\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{(n+1)^{p-1}}$,且$\dfrac{1}{n^p}<\dfrac{2}{n^p}$.
所以$\dfrac{1}{n^p}<\dfrac{2}{n^p}<\dfrac{1}{(p-1)}(\dfrac{1}{(n-1)^{p-1}}-\dfrac{1}{(n+1)^{p-1}})$。
然后呢?我整不来了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-29 01:00
lemondian 发表于 2023-8-28 23:24
是不是这样:
在https://kuing.cjhb.site/forum.php?mod=viewthread&tid=4042中
有$\dfrac{1}{( ...
还是应该取 d=0.5 啊,有
\[\frac{p-1}{n^p}<\frac1{(n-0.5)^{p-1}}-\frac1{(n+0.5)^{p-1}},\quad(*)\]
然后易证
\[\frac1{(n-0.5)^{p-1}}-\frac1{(n+0.5)^{p-1}}<\frac1{(n-1)^{p-1}}-\frac1{n^{p-1}},\]
所以式 (*) 强于 1#。

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-8-29 01:17 from mobile
‘易证’下面这个不等式,没看懂哩,麻烦kuing再教一下吧

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-29 01:41
lemondian 发表于 2023-8-29 01:17
‘易证’下面这个不等式,没看懂哩,麻烦kuing再教一下吧
真是写少一点儿都不行吗
令 `f(x)=x^{1-p}-(x+1)^{1-p}`,易得 `f'(x)<0` 故 `f(n-0.5)<f(n-1)`。

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-8-29 18:00
kuing 发表于 2023-8-29 01:41
真是写少一点儿都不行吗
令 `f(x)=x^{1-p}-(x+1)^{1-p}`,易得 `f'(x)
谢谢了!
学习kuing的解法后,我用拉格朗日中值定理也证到1#的不等式

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-29 18:20
lemondian 发表于 2023-8-29 18:00
谢谢了!
学习kuing的解法后,我用拉格朗日中值定理也证到1#的不等式
但拉格朗应该证不出 6# 的式 (*)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-29 23:24
lemondian 发表于 2023-8-29 18:00
谢谢了!
学习kuing的解法后,我用拉格朗日中值定理也证到1#的不等式
咳,1# 其实是从积分来的,就是写成
\[\frac1{n^p}<\int_{n-1}^n\frac1{n^p}\rmd x,\]
从几何意义看是显然成立。

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-8-30 00:39
kuing 发表于 2023-8-29 23:24
咳,1# 其实是从积分来的,就是写成
\[\frac1{n^p}<\int_{n-1}^n\frac1{n^p}\rmd x,\]
从几何意义看是显然成立。
积分第一中值定理

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-8-30 09:44
kuing 发表于 2023-8-29 23:24
咳,1# 其实是从积分来的,就是写成
\[\frac1{n^p}
积分已经差不多忘光了,kuing详写一下呗

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:18 GMT+8

Powered by Discuz!

Processed in 0.013764 seconds, 24 queries