Forgot password?
 Register account
View 285|Reply 7

[分析/方程] Stone-Weierstrass的应用

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2023-9-3 10:09 |Read mode
Last edited by hbghlyj 2023-9-3 10:44Functional Analysis I 2017: Problem Sheet 3 Hilary Ann Priestley
14. Let $f$ be a real-valued continuous function on $[0,1]$ such that
$$∫^1_0f(x)e^{nx}\rmd x=0\text{ for }n = 0, 1, 2, \dots$$
Prove that $f ≡ 0$.
第一种证明是换元$\int_0^1 f(x)e^{nx}\, \mathrm dx=\int_1^e f(\ln y)y^{n-1}\,\mathrm dy$,再用多项式在$C[0,1]$稠密
math.stackexchange.com/questions/772095
math.stackexchange.com/questions/1102388
math.stackexchange.com/questions/1355632
math.stackexchange.com/questions/91149
第二种证明是用“$e^{nx}$生成的代数$\{P(e^{nx}):P为多项式\}$在$C[0,1]$稠密”

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-9-3 10:29
Last edited by hbghlyj 2023-9-4 19:50math.stackexchange.com/questions/3486447提出了问题:把$e^{nx}$改为$e^{-nx}$还成立吗?
\[∫^1_0f(x)e^{-nx}\rmd x=0\text{ for }n = 0, 1, 2, \dots\]
改为$e^{-2nx}$还成立吗?

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-9-4 11:25

411

Threads

1619

Posts

110K

Credits

Credits
11813

Show all posts

abababa Posted 2023-9-4 15:08
hbghlyj 发表于 2023-9-3 10:29
在https://math.stackexchange.com/questions/3486447提出了问题:把$e^{nx}$改为$e^{-n}$还成立吗?
\[∫^ ...
这两个肯定成立吧,因为$e^{-n},e^{-2n}$都是常数,能移到积分号外面,然后就是$\int_{0}^{1}f(x)dx=0$,根据$f(x)$连续,用反证法就能证明$f(x)$必定恒为零。

是不是问的不是上面那种,而是$e^{-nx},e^{-2nx}$?这样的也都成立,因为对于偶数的,它还是一个子代数,仍然存在$P_n(\varphi)$一致收敛到$f(x)$,其中$\varphi(x)=e^{-nx},e^{-2nx}$,且$P_n$是$\varphi$的$n$次多项式。然后就得到$\int_{0}^{1}[f(x)]^2dx\leftarrow\int_{0}^{1}f(x)P_n(\varphi)dx=0$,根据连续性还是得到$f(x)\equiv0$。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-9-4 19:58
abababa 发表于 2023-9-4 15:08
是不是问的不是上面那种,而是$e^{-nx},e^{-2nx}$?
是的,我少打了$x$。已改 :P

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-9-4 20:02
SL_MathGuy 发表于 2019-12-24 16:13
But, {$P_{2n+1}(e^{t})|n=0,1,2,3,...$} is not an algebra since it's not closed under multiplication.
虽然奇数次多项式不构成子代数,但也能得到$f(x)=0$吧?

411

Threads

1619

Posts

110K

Credits

Credits
11813

Show all posts

abababa Posted 2023-9-4 20:42
hbghlyj 发表于 2023-9-4 20:02
虽然奇数次多项式不构成子代数,但也能得到$f(x)=0$吧?
感觉奇数次的不行,还得对f做某些限制才行。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-9-4 21:42

偶数次的得到$f(x)=0$,能推出奇数次得到$f(x)=0$:

Last edited by hbghlyj 2023-9-4 23:06
abababa 发表于 2023-9-4 20:42
感觉奇数次的不行,还得对f做某些限制才行。
$∫^1_0f(t)e^{(2n+1)t}dt=0$ for all $n$
$\implies∫^1_0f(t)e^te^{2nt}dt=0$ for all $n$
$\implies f(t)e^t=0$
$\implies f=0$

Mobile version|Discuz Math Forum

2025-6-5 01:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit