Forgot password?
 Create new account
View 175|Reply 5

建立 chat room

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2022-7-16 01:47:25 |Read mode
Last edited by hbghlyj at 2025-3-15 13:05:22类似于Mathematics StackExchange的chat room和Mathematica StackExchange的chat room

建议也搞一個chat room,将短期讨论移動到chat room,仅用來发表简短的评论,如kuing.cjhb.site/forum.php?mod=viewthread&tid=13121kuing.cjhb.site/forum.php?mod=viewthread&tid=13103

而对于值得存檔的内容,在论坛上发帖以備日後參考,并启发未来的跟帖和问答。

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-12 04:54:50
手机版可以展开右侧菜单查看在线用户 1000001788.jpg

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2024-12-12 16:04:32
技术水平有限,无法建立 chat room

Comment

如果用户被屏蔽,似乎在聊天室中也会被屏蔽 😟  Posted at 2025-1-18 16:14

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-25 08:20:26
右上方的通知,点击展开后,可同时看到帖子的评论/回复(comment/reply)和聊天的回复(chat reply),聊天的回复还有提示音 Screenshot 2024-12-25 001858.png

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-26 01:59:01

点击左边的箭头可以跳转到所回复的帖子

  • 如果参与话题的用户下线又上线,这期间聊天室会产生一些消息,会导致帖子与所回复的帖子相隔很远。点击左边的箭头即可跳转到所回复的帖子。
  • 同作者的时间相近的回复会合并在一起。
  • 若较长时间没有人发言,在间隔处显示 2 hours later… 或 4 hours later… 等。

例如:

hbghlyj 发表于23:59
I have a basic topology question. Let X be the set of natural numbers {0, 1, 2, ...} and let Y be the set {0} ∪ {1, 1/2, 1/3, ...}, both with the subspace topology from the real line. Are they homotopy equivalent spaces?

Thorgott 发表于23:59
@hbghlyj what do you think? how many maps from the latter to the former do you know?

hbghlyj 发表于00:17
Suppose $f:Y\to X$ is a continuous map. Since $f^{-1}(\{f(0)\})$ is open in $Y$ and contains 0, it must be of the form $\{0\}\cup\{\frac1n:n\ge k\}$ for some $k$.

Thorgott 发表于00:18
so what does that mean in terms of the connected components?

hbghlyj 发表于01:07
$f:Y\to X$ and $g:X\to Y$ induce $f _ *:\pi _ 0(Y) \to \pi _ 0(X)$ and $g _*:\pi_0(X)\to\pi _ 0(Y)$ and suppose $g\circ f\simeq \text{id}_Y$ then $g_* \circ f _* =\text{id}_*$ but $f_*$ is not injective, contradiction.
So $X$ and $Y$ are not homotopy equivalent.

Thorgott 发表于13:32
@hbghlyj yup, that's correct :)

手机版Mobile version|Leisure Math Forum

2025-4-20 12:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list