Forgot password
 Register account
View 2225|Reply 3

[函数] 一个与函数驻点有关的函数题

[Copy link]

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2013-11-29 20:16 |Read mode
Last edited by 青青子衿 2013-11-30 10:32已知函数$f(x)=\frac{x^3+ax^2+bx+1}{e^x}$在给定区间上存在一阶导数为零的点,且在给定区间上单调,求$a+b$的极值点

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2013-11-30 06:42
回复 1# 青青子衿


楼主是在开玩笑么.........
\[f'(x)=e^{-x}[-x^3+(3-a)x^2+(2a-b)x+b-1]\]
这货无论如何都会有零点,且这货无论如何不可能恒不为负

461

Threads

958

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2013-12-8 07:16
回复 2# 战巡
回复  青青子衿 
楼主是在开玩笑么.........
$f'(x)=e^{-x}[-x^3+(3-a)x^2+(2a-b)x+b-1]$
这货无论如何 ...
战巡 发表于 2013-11-30 06:42
已知函数$f(x)=\frac{x^3+ax^2+bx+1}{e^x}$在给定区间上存在非极值驻点,求的$a+b$极值点

461

Threads

958

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2013-12-21 17:02
回复  青青子衿
楼主是在开玩笑么.........
\[f'(x)=e^{-x}[-x^3+(3-a)x^2+(2a-b)x+b-1]\]
这货无论如何 ...
战巡 发表于 2013-11-30 06:42
即要求$f'(x_0)=0$且$f''(x_0)=0$
\[\begin{cases} e^{-x}[-x^3+(3-a)x^2+(2a-b)x+b-1]=0 \\ e^{-x}[-x^3+(6-a)x^2+(4a-b-6)x+(2b-2a-1)]=0 \end{cases}\]
\[\Longrightarrow\begin{cases} -x^3+(3-a)x^2+(2a-b)x+b-1=0 \\ -x^3+(6-a)x^2+(4a-b-6)x+(2b-2a-1)=0 \end{cases}\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:38 GMT+8

Powered by Discuz!

Processed in 0.054277 seconds, 23 queries