Forgot password
 Register account
View 185|Reply 2

[函数] $y=\sqrt[3]{x+\sqrt{1+x^2}}+\sqrt[3]{x-\sqrt{1+x^2}}$ 的反函数

[Copy link]

81

Threads

165

Posts

1

Reputation

Show all posts

APPSYZY posted 2023-11-6 20:56 |Read mode
求函数 $$y=\sqrt[3]{x+\sqrt{1+x^2}}+\sqrt[3]{x-\sqrt{1+x^2}}$$ 的反函数.

Related threads

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-11-6 22:07

\begin{align*}
a&=x+\sqrt{1+x^2},\\
b&=x-\sqrt{1+x^2},
\end{align*}
则有
\begin{align*}
a+b&=2x,\\
ab&=-1,
\end{align*}
因为
\[\bigl(\sqrt[3]a+\sqrt[3]b\bigr)^3=a+b+3\sqrt[3]{ab}\bigl(\sqrt[3]a+\sqrt[3]b\bigr),\]
所以
\[y^3=2x-3y,\]

\[x=\frac{y^3+3y}2.\]

Rate

Number of participants 1威望 +2 Collapse Reason
APPSYZY + 2

View Rating Log

70

Threads

442

Posts

19

Reputation

Show all posts

hejoseph posted 2023-11-7 11:31
这个很明显的三次方程根的形式:方程 $x^2+px+q=0$ 的一根为
\[
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2+\left(\frac{p}{3}\right)^3}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^2+\left(\frac{p}{3}\right)^3}}
\]
题目中
\[
-\frac{q}{2}=x,\frac{p}{3}=1
\]
就得到
\[
y^3+3y-2x=0
\]

Rate

Number of participants 1威望 +2 Collapse Reason
APPSYZY + 2 没想到题目背景这个

View Rating Log

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 01:27 GMT+8

Powered by Discuz!

Processed in 0.016948 seconds, 31 queries