Forgot password?
 Create new account
View 151|Reply 2

[函数] 一个互反函数的零点问题

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-5-28 21:35:20 |Read mode
函数$f(x)=e^x+x-4,g(x)=lnx+x-4$的零点分别是$m,n$,如何证明:$mlnn+nlnm<4ln2$?
可以推出$m+n=4,n=e^m$.

Comment

想调整为$mlnm+nlnn<4ln2$完全失败。  Posted at 2023-5-28 21:36

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2023-5-29 00:52:25
$f(x),g(x)$都是给定的,$m,n$是可以求出来的,其实完全可以暴力解决

\[g(n)=\ln(n)+n-4=0\]
\[ne^n=e^4\]
\[n=W(e^4)=2.92627\]
\[m=4-n=1.07373\]
\[m\ln(n)+n\ln(m)=1.36106<4\ln(2)=2.77259\]


退一万步讲,即便不硬算,估算$m,n$的大小也比你用什么乱七八糟的函数办法要简单

注意到$\ln(n)=4-n$
\[m\ln(n)+n\ln(m)=m(4-n)+n\ln(m)<m(4-n)+n(m-1)\]
\[=4m-n=16-5n\]

另一方面,$ne^n=e^4$,而且$ne^n$在这一段上明摆着随$n$递增,这里显然有
\[e\cdot e^e=e^{e+1}=e^{3.71828}<e^4\]
故此$n>e$
\[16-5n<16-5e=2.40859<4\ln(2)=2.77259\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list