Forgot password
 Register account
View 269|Reply 2

[函数] 一个互反函数的零点问题

[Copy link]

282

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2023-5-28 21:35 |Read mode
函数$f(x)=e^x+x-4,g(x)=lnx+x-4$的零点分别是$m,n$,如何证明:$mlnn+nlnm<4ln2$?
可以推出$m+n=4,n=e^m$.

Comment

想调整为$mlnm+nlnn<4ln2$完全失败。  posted 2023-5-28 21:36

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2023-5-29 00:52
$f(x),g(x)$都是给定的,$m,n$是可以求出来的,其实完全可以暴力解决

\[g(n)=\ln(n)+n-4=0\]
\[ne^n=e^4\]
\[n=W(e^4)=2.92627\]
\[m=4-n=1.07373\]
\[m\ln(n)+n\ln(m)=1.36106<4\ln(2)=2.77259\]


退一万步讲,即便不硬算,估算$m,n$的大小也比你用什么乱七八糟的函数办法要简单

注意到$\ln(n)=4-n$
\[m\ln(n)+n\ln(m)=m(4-n)+n\ln(m)<m(4-n)+n(m-1)\]
\[=4m-n=16-5n\]

另一方面,$ne^n=e^4$,而且$ne^n$在这一段上明摆着随$n$递增,这里显然有
\[e\cdot e^e=e^{e+1}=e^{3.71828}<e^4\]
故此$n>e$
\[16-5n<16-5e=2.40859<4\ln(2)=2.77259\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:07 GMT+8

Powered by Discuz!

Processed in 0.016339 seconds, 40 queries