Forgot password?
 Create new account
View 224|Reply 7

[几何] 向量模的取值范围

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-5-28 20:40:26 |Read mode
单位向量$\vv{a},\vv{b}$的夹角为$60\du $,则$|(1-t)\vv{a}-t\vv{b}|+\frac{|t(\vv{a}+\vv{b})|}{2}$的范围是多少?

Comment

直接坐标算比较绕。  Posted at 2023-5-28 21:31

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2023-5-29 14:10:10
$f(t)=\sqrt{3t^2-3t+1}+\frac{\sqrt 3}{2}\abs{t}$
要取最小值,t>0,求导试了下,在$t=\frac{1}{3}$取到.

6

Threads

63

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted at 2023-5-29 18:53:28
如果去掉$\bm a$,$\bm b$为单位向量的条件,如何用$\bm a$,$\bm b$的模长表示原式的最小值呢?

Comment

意思是直接用$|\vv{a}|,|\vv{b}|$表示 ?  Posted at 2023-5-29 21:33
是的  Posted at 2023-5-30 07:14

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-5-29 21:31:42
realnumber 发表于 2023-5-29 14:10
$f(t)=\sqrt{3t^2-3t+1}+\frac{\sqrt 3}{2}\abs{t}$
要取最小值,t>0,求导试了下,在$t=\frac{1}{3}$取到. ...
我也是这样想的,但开始没敢这样算,怕!转头用画图,后来有空了,发现$3t^2-3t+1\geqslant \frac{3(1-t)^2}{4}$,简直是天作之合。

6

Threads

63

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted at 2023-5-30 07:49:05
Ly-lie 发表于 2023-5-29 18:53
如果去掉$\bm a$,$\bm b$为单位向量的条件,如何用$\bm a$,$\bm b$的模长表示原式的最小值呢? ...
采用数形结合,如图,设$\vv{AB}=\vv{a},\vv{AD}=\vv{b}$,反向倍长$AD$至$C$,则原式的值即为$AE+\frac{1}{2}BE$,其中$t$的值为$\frac{BE}{BC}$,直接用$a,b$表示两个向量的模,以$BA$为长直角边构造一个$ 30\du $的直角三角形,由托勒密不等式得$$AE+\frac{1}{2}BE\ge \frac{\sqrt{3}}{2}EF\ge a\sin (30^\circ +\angle CBA)$$接下来就是解三角形得到结果$\frac{a^2+2ab}{2\sqrt {a^2+b^2+ab}}$
屏幕截图 2023-05-30 073004.png

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 是位狠人!

View Rating Log

手机版Mobile version|Leisure Math Forum

2025-4-21 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list