Forgot password?
 Create new account
View 471|Reply 16

[几何] 两个小题 向量 三角形

[Copy link]

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2023-5-24 01:35:49 |Read mode
1.已知非零平面向量$\vv{a},\vv{b},\vv{c},$满足 $|\vv{a}|=5,2|\vv{b}|=|\vv{c}|,$ 且 $(\vv{b}-\vv{a})\cdot (\vv{c}-\vv{a})=\bm{0}$, 则$|\vv{b}|$的最小值___
2.$ A,B,C$是$△ABC$的三个内角,则$3\cos A+2\cos 2B+\cos 3C$的取值范围___

Related collections:

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2023-5-24 19:50:23
1.如图,$\vv{OA}=\vv{a},\vv{OB}=\vv{b},\vv{OC}=\vv{c}$,对于某个特定的角BAO,要使$\abs{\vv{b}}$尽可能小,则OB垂直BA,
减小角BAO时,$\abs{\vv{b}}$变小,直到不存在C,临界点是,$\abs{\vv{b}}=x,x^2+(2x)^2=5^2,x=\sqrt{5}$
QQ截图20230524185412qwqw.jpg

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-25 16:31:19
\[(\bm b-\bm a)\cdot(\bm c-\bm a)=0\iff\bm b\cdot\bm c+\bm a^2=\bm a\cdot(\bm b+\bm c),\]
平方得
\[(\bm b\cdot\bm c+\bm a^2)^2=\bigl(\bm a\cdot(\bm b+\bm c)\bigr)^2\leqslant\bm a^2(\bm b+\bm c)^2,\]
展开即
\[(\bm b\cdot\bm c)^2+\bm a^4\leqslant\bm a^2(\bm b^2+\bm c^2),\]
由 `(\bm b\cdot\bm c)^2\geqslant0` 及条件 `\bm c^2=4\bm b^2`,得到
\[\bm a^4\leqslant5\bm a^2\bm b^2\iff\bm b^2\geqslant\frac{\bm a^2}5=5,\]
取等略。

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-25 16:47:12
装逼恒等式解法:注意到
\[\bm b^2+\bm c^2-\bm a^2+2(\bm b-\bm a)\cdot(\bm c-\bm a)=(\bm b+\bm c-\bm a)^2\geqslant0,\]
由条件,上式即 `5\bm b^2-\bm a^2\geqslant0`,所以 `\bm b^2\geqslant5`。

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

 Author| facebooker Posted at 2023-5-25 18:41:38
kuing 发表于 2023-5-25 16:47
装逼恒等式解法:注意到
\[\bm b^2+\bm c^2-\bm a^2+2(\bm b-\bm a)\cdot(\bm c-\bm a)=(\bm b+\bm c-\bm a ...
期望的装逼解法终于出现了。。。

顺便看看第二题吧 猜答案容易 严谨的解法怎么弄呢?

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-25 18:52:20
facebooker 发表于 2023-5-25 18:41
期望的装逼解法终于出现了。。。

顺便看看第二题吧 猜答案容易 严谨的解法怎么弄呢? ...
第二题上界简单,下界还没想出来。

记 $T=3\cos A+2\cos 2B+\cos 3C$,显然有 `T<3+2+1=6`,而当 `A=C\to0`, `B\to\pi` 时,`T\to6`,所以上确界为 `6`。

下界待续……

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-5-26 17:26:18

三角不等式问题

2023四川预赛题:已知$A,B,C$是$\triangle ABC$的内角,求$3cosA+2cos2B+cos3C$的取值范围。

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-26 21:53:14
facebooker 发表于 2023-5-25 18:41
期望的装逼解法终于出现了。。。

顺便看看第二题吧 猜答案容易 严谨的解法怎么弄呢? ...
下界我连猜答案都猜不出来,你怎么猜的?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-5-26 22:42:09
kuing 发表于 2023-5-26 21:53
下界我连猜答案都猜不出来,你怎么猜的?
这个帖可知源:2023年全国高中数学联赛四川省预赛试题,填空题的最后一个,其结果为 (-25/16,6).
isee=freeMaths@知乎

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

 Author| facebooker Posted at 2023-5-26 23:58:33
kuing 发表于 2023-5-26 21:53
下界我连猜答案都猜不出来,你怎么猜的?
我是用拉乘猜的 一定在边界取得上下限 然后就C→0  或者 A→0 挨个算

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-27 01:01:34
噢,这么说,应该是 C=0,B=arccos(3/8),A=180°-B 时取?

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

 Author| facebooker Posted at 2023-5-27 17:02:20
kuing 发表于 2023-5-27 01:01
噢,这么说,应该是 C=0,B=arccos(3/8),A=180°-B 时取?
是的

19

Threads

81

Posts

599

Credits

Credits
599
QQ

Show all posts

O-17 Posted at 2023-5-27 20:31:56
星的解法
k - 11007.jpg

Comment

太吓人鸟😄  Posted at 2023-5-28 01:45

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-28 16:58:22
前两天的这帖 kuing.cjhb.site/forum.php?mod=redirect&go … =11007&pid=54217 已经有了,本帖关闭

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-5-28 17:06:53
isee 发表于 2023-5-26 22:42
由这个帖可知源:2023年全国高中数学联赛四川省预赛试题,填空题的最后一个,其结果为 (-25/16,6). ...
一个预赛题水竟然有这么深,真想看看命题人怎么解的🤔

6

Threads

63

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted at 2023-5-28 19:08:51
又发现一个解法,好像也不简单:mp.weixin.qq.com/s/uIIYws3wV_0m6GIo3YmuFg,这套题的标答填空题没有过程……

手机版Mobile version|Leisure Math Forum

2025-4-20 22:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list