是否存在函数$f_i:\mathbb R^n→\mathbb R^n$,$i=2,\dots,n$,$f_i(x_1,\dots,x_n)=x_1f_i(1,0,0,\dots,0)+\dots+x_nf_i(0,0,\dots,0,1)$,对于任意向量$v\inR^n$,$v,f_2(v),\dots,f_n(v)$两两正交?
当$n=2$时,取$f_2(a,b)=(b,-a)$.
当$n=4$时,取$f_2(a,b,c,d)=(-b, a, d, -c),f_3(a,b,c,d)=(-c, -d, a, b),f_4(a,b,c,d)=(-d, c, -b, a)$.
当$n=8$时,取
- $(a, b, c, d, e, f, g, h)$
- $(-b, a, -d, c, -f, e, -h, g)$
- $(-c, d, a, -b, -g, h, e, -f)$
- $(-d, -c, b, a, -h, -g, f, e)$
- $(-e, f, g, h, a, -b, -c, -d)$
- $(-f, -e, h, -g, b, a, d, -c)$
- $(-g, -h, -e, f, c, -d, a, b)$
- $(-h, g, -f, e, -d, c, -b, a)$
其它的$n≥2$呢 |