|
Last edited by hbghlyj at 2025-4-7 16:51:10在平行四边形 OACB 中,$\overline{OA}=\sqrt{2}, \overline{OB}=2 \sqrt{2}, \cos \angle AOB=\frac{1}{4}$.点 P 满足以下两个条件:
(1) $\overrightarrow{OP}=s \overrightarrow{OA}+t \overrightarrow{OB}(0 \leqslant s \leqslant 1,0 \leqslant t \leqslant 1)$;
(2) $\overrightarrow{OP} \cdot \overrightarrow{OB}+\overrightarrow{BP} \cdot \overrightarrow{BC}=2$.
点 X 在以 O 为圆心,且过 A 点的圆上,$|3 \overrightarrow{OP}-\overrightarrow{OX}|$ 的最大值和最小值分别为 $M, m$.若 $M \times m=a \sqrt{6}+b$($a, b$ 均为有理数),求 $a^2+b^2$ 的值.
%20at%20(0,0);%0A%20%20%5Ccoordinate%20(A)%20at%20(%7Bsqrt(2)%7D,0);%0A%20%20%5Ccoordinate%20(B)%20at%20(%7Bsqrt(2)%2F2%7D,%20%7Bsqrt(30)%2F2%7D);%0A%20%20%5Ccoordinate%20(C)%20at%20(%24%20(A)%20+%20(B)%20%24);%0A%20%20%5Cdraw%5Bthick%5D%20(O)%20--%20(A)%20--%20(C)%20--%20(B)%20--%20cycle;%0A%20%20%5Cfill%20(O)%20circle%20(2pt)%20node%5Bbelow%20left%5D%20%7B%24O%24%7D%20(A)%20circle%20(2pt)%20node%5Bbelow%20right%5D%20%7B%24A%24%7D%20(B)%20circle%20(2pt)%20node%5Babove%20left%5D%20%7B%24B%24%7D%20(C)%20circle%20(2pt)%20node%5Babove%20right%5D%20%7B%24C%24%7D;%0A%5Cend%7Btikzpicture%7D) |
|