Forgot password?
 Create new account
View 80|Reply 0

[几何] $|3 \overrightarrow{O P}-\overrightarrow{O X}|$ 的最大值和最小值

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2022-8-13 00:33:10 |Read mode
Last edited by hbghlyj at 2025-4-7 16:51:10在平行四边形 OACB 中,$\overline{OA}=\sqrt{2}, \overline{OB}=2 \sqrt{2}, \cos \angle AOB=\frac{1}{4}$.点 P 满足以下两个条件:
(1) $\overrightarrow{OP}=s \overrightarrow{OA}+t \overrightarrow{OB}(0 \leqslant s \leqslant 1,0 \leqslant t \leqslant 1)$;
(2) $\overrightarrow{OP} \cdot \overrightarrow{OB}+\overrightarrow{BP} \cdot \overrightarrow{BC}=2$.
点 X 在以 O 为圆心,且过 A 点的圆上,$|3 \overrightarrow{OP}-\overrightarrow{OX}|$ 的最大值和最小值分别为 $M, m$.若 $M \times m=a \sqrt{6}+b$($a, b$ 均为有理数),求 $a^2+b^2$ 的值.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list