Forgot password
 Register account
View 166|Reply 2

[几何] 动点及向量最值问题

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2022-11-26 23:28 |Read mode
已知A,B为圆$ O:x^2+y^2=5 $上的两个动点,AB=4,M为线段AB的中点,点P为直线l:x+y-6=0上一动点,则$ \vv{PM} \cdot \vv{PB}$的最小值为多少?
请教各位巨佬,谢谢!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-11-27 00:53
记 MB 中点为 N,则
\[\vv{PM}\cdot\vv{PB}=\frac{(\vv{PM}+\vv{PB})^2-(\vv{PM}-\vv{PB})^2}4=PN^2-1,\]
易知 OM = 1,`ON=\sqrt2`,而 PN + NO ≥ O 到直线 l 的距离,即得 `PN\geqslant2\sqrt2`,所以 `\vv{PM}\cdot\vv{PB}\geqslant7`。

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2022-11-27 08:18 from mobile
哎,我怎么忘记了极化恒等式,不过后面的转化想不到,谢谢kk

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 07:54 GMT+8

Powered by Discuz!

Processed in 0.066796 seconds, 43 queries