Forgot password?
 Create new account
View 122|Reply 2

[几何] 动点及向量最值问题

[Copy link]

166

Threads

385

Posts

3327

Credits

Credits
3327

Show all posts

lrh2006 Posted at 2022-11-26 23:28:02 |Read mode
已知A,B为圆$ O:x^2+y^2=5 $上的两个动点,AB=4,M为线段AB的中点,点P为直线l:x+y-6=0上一动点,则$ \vv{PM} \cdot \vv{PB}$的最小值为多少?
请教各位巨佬,谢谢!

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2022-11-27 00:53:01
记 MB 中点为 N,则
\[\vv{PM}\cdot\vv{PB}=\frac{(\vv{PM}+\vv{PB})^2-(\vv{PM}-\vv{PB})^2}4=PN^2-1,\]
易知 OM = 1,`ON=\sqrt2`,而 PN + NO ≥ O 到直线 l 的距离,即得 `PN\geqslant2\sqrt2`,所以 `\vv{PM}\cdot\vv{PB}\geqslant7`。

166

Threads

385

Posts

3327

Credits

Credits
3327

Show all posts

 Author| lrh2006 Posted at 2022-11-27 08:18:51 From the mobile phone
哎,我怎么忘记了极化恒等式,不过后面的转化想不到,谢谢kk

手机版Mobile version|Leisure Math Forum

2025-4-21 01:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list