|
搬运一下.
To explain why these coordinates are signed ratios of areas, let us assume that we work in the Euclidean space $\mathbf{E}^{3}$. Here, consider the basis, namely $\{\mathbf{i},\mathbf{j},\mathbf{k}\}$. Consider also the positively oriented triangle $ABC$ lying in the $Oxy$ plane. It is known that for any basis $\{\mathbf{e},\mathbf{f},\mathbf{g}\}$ of $\mathbf{E}^{3}$ and any free vector $\mathbf{h}$ one has
$$\mathbf{h}=\frac{1}{(\mathbf{e},\mathbf{f},\mathbf{g})}\cdot\left[(\mathbf{h},\mathbf{f},\mathbf{g})\mathbf{e}+(\mathbf{e},\mathbf{h},\mathbf{g})\mathbf{f}+(\mathbf{e},\mathbf{f},\mathbf{h})\mathbf{g}\right],$$
where $(\mathbf{e},\mathbf{f},\mathbf{g})=(\mathbf{e}\times\mathbf{f})\cdot\mathbf{g}$ stands for the mixed product of these three vectors.
Take $\mathbf{e}=\vec{AB},\,\mathbf{f}=\vec{AC},\,\mathbf{g}=\mathbf{k},\,\mathbf{h}=\vec{AP}$, where $P$ is an arbitrary point in the plane $Oxy$, and remark that
$$(\mathbf{e},\mathbf{f},\mathbf{h})=(\vec{AB}\times\vec{AC})\cdot\vec{AP}=(\vert\vec{AB}\times\vec{AC}\vert\mathbf{k})\cdot\vec{AP} = 0.$$
A subtle point regarding our choice of free vectors: $\mathbf{e}$ is, in fact, the equipollence class of the bound vector $\vec{AB}$.
We have obtained that
$$\vec{AP}=m_B\cdot\vec{AB}+m_C\cdot\vec{AC},\,\mbox{ where }\,m_B=\frac{(\vec{AP},\vec{AC},\mathbf{k})}{(\vec{AB},\vec{AC},\mathbf{k})},\,m_C=\frac{(\vec{AB},\vec{AP},\mathbf{k})}{(\vec{AB},\vec{AC},\mathbf{k})}.$$
Given the positive (counterclockwise) orientation of triangle $ABC$, the denominator of both $m_B$ and $m_C$ is precisely the double of the area of the triangle $ABC$. Also,
$$(\vec{AP},\vec{AC},\mathbf{k})=(\vec{PC},\vec{PA},\mathbf{k})\,\mbox{ and }\,(\vec{AB},\vec{AP},\mathbf{k})=(\vec{PA},\vec{PB},\mathbf{k})$$
and so the numerators of $m_B$ and $m_C$ are the doubles of the signed areas of triangles $APC$ and respectively $ABP$.
Further, we deduce that
$$\vec{OP}=(1-m_B-m_C)\cdot\vec{OA}+m_B\cdot\vec{OB}+m_C\cdot\vec{OC}$$
which means that the numbers $1-m_B-m_C$, $m_B$ and $m_C$ are the barycentric coordinates of $P$. Similarly, the third barycentric coordinate reads as
$$m_A = 1 - m_B - m_C = \frac{(\vec{PB},\vec{PC},\mathbf{k})}{(\vec{AB},\vec{AC},\mathbf{k})}.$$
This $m$-letter notation of the barycentric coordinates comes from the fact that the point $P$ may be interpreted as the center of mass for the masses $m_A$, $m_B$, $m_C$ which are located in $A$, $B$ and $C$.
Switching back and forth between the barycentric coordinates and other coordinate systems makes some problems much easier to solve. |
|