Forgot password?
 Create new account
View 198|Reply 3

[几何] I是△ABC的内心,D在BC上,E在BC延长线上,满足BD:DC=BE:EC,DF⊥EI,求证:∠AFE=∠IDE

[Copy link]

13

Threads

5

Posts

116

Credits

Credits
116

Show all posts

zhiwen Posted at 2023-11-19 21:20:03 |Read mode

I是△ABC的内心, D在BC上,E在BC延长线上,
满足BD:DC=BE:EC
作DF⊥EI
求证:∠AFE=∠IDE

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2023-11-26 00:04:55
如图: 40.png
  作$ DN\px CI $交$ EI $于$ N $,延长$ CB $至$ M $,使$ NM=BD $,依题意有\[ \dfrac{IN}{IE}=\dfrac{DC}{BE}=\dfrac{BD}{BE}=\dfrac{BM}{BE}\riff MN\px BI \]
延长$ MN $交$ AB $于$ P $,有\[ \angle MPB=\angle PBI=\angle IBD=\angle PMB\riff BP=BM=BD\riff\angle MPD=90\du  \]
所以$ PFDN $四点共圆\[ \angle PFN=\angle PDN \]又\[ \angle PND=\angle PNI+\angle IND=\angle NIB+\angle FIC=\angle IBC+\angle IGB=90\du -\angle BAI\riff \angle BAI=\angle PDN=\angle PFN \]故$ AFIP $四点共圆\[ \angle AFE=\angle API=\angle IDE \]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2023-11-26 09:27:52
题的出处?

Comment

纯几何吧  Posted at 2023-11-28 13:56

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list