Forgot password?
 Create new account
View 159|Reply 4

[几何] $\abs{\vv{a}-\vv{c}}+2\abs{\vv{b}-\vv{c}}$的最小值

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2023-2-25 18:20:05 |Read mode
平面向量$\vv{a},\vv{b},\vv{c}$,其中$\vv{a},\vv{b}$垂直,$\abs{\vv{a}}=\abs{\vv{b}}=4,\abs{\vv{a}+\vv{b}-\vv{c}}=2$,
则$M=\abs{\vv{a}-\vv{c}}+2\abs{\vv{b}-\vv{c}}$的最小值为?







设$\vv{a}=(4,0),\vv{b}=(0,4),\vv{c}=(x,y)$,则$(x-4)^2+(y-4)^2=4,M=\sqrt{8y-12}+2\sqrt{8x-12}$
设$x-4=s,y-4=t,s^2+t^2=4,M=\sqrt{8t+20}+2\sqrt{8s+20}$做不下去了,

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2023-2-25 23:21:42
多半是阿氏圆,没动笔,可以参考这个先 kuing.cjhb.site/forum.php?mod=viewthread&tid=9937
isee=freeMaths@知乎

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2023-2-25 23:26:36
果然

据说是阿氏圆的问题  求简洁的解法
kuing.cjhb.site/forum.php?mod=viewthread& … =6777&fromuid=15
(出处: 悠闲数学娱乐论坛(第3版))
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-2-25 23:39:25
单个字母的向量还是建议用 \bm(粗体)来代替 \vv,这 \vv 再套 \abs 那 $\abs{\vv a}=\abs{\vv b}$ 实在太难看😣
就算一定要用箭头,也建议改为小一点的 \vec :
$\abs{\vec a}=\abs{\vec b}$效果:$\abs{\vec a}=\abs{\vec b}$ 也好一点儿。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2023-2-26 00:15:10
isee 发表于 2023-2-25 23:21
多半是阿氏圆,没动笔,可以参考这个先 https://kuing.cjhb.site/forum.php?mod=viewthread&tid=9 ...
恩,明白了,谢谢D(4,3)
A(4,0),B(0,4),P(x,y),$(x-4)^2+(y-4)^2=4$,求$M=2\abs{BP}+\abs{AP}$
由楼上提示$\abs{AP}=2\abs{DP}$,本题$M\ge 2\sqrt{17}$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list