Forgot password
 Register account
View 2060|Reply 2

[几何] 据说是阿氏圆的问题 求简洁的解法

[Copy link]

107

Threads

224

Posts

1

Reputation

Show all posts

facebooker posted 2019-12-12 17:39 |Read mode
Last edited by facebooker 2019-12-12 18:50已知 $\bm a,\bm b $是互相垂直的平面单位向量,平面向量$\bm c$满足
$\abs{ \bm c-\bm b -\bm a}=\dfrac{1}{2}$,则$2\abs{\bm c-\bm b}+\abs{\bm c-\bm a}$最小值为___

9

Threads

38

Posts

6

Reputation

Show all posts

player1703 posted 2020-2-22 11:15
果然是阿氏圆.
正方形$OADB$边长为1, 以$D$为圆心作半径为1/2的圆. $C$为$\odot D$上的动点, 求$CA + 2CB$的最小值.
最小值.png
取$DE$中点$M$, 连接$CM$. 可以证明$\odot D$是$\triangle ACM$ 的 $C-$阿氏圆, $\therefore AC = 2CM$.
\begin{equation}
CA+ 2CB = 2CM + 2CB = 2(CM + CB)
\end{equation}
显然当点$C$落在线段$BM$与$\odot D$交点处$C'$时取最小值$2BM=\sqrt{17}/2$

可是最大值好像就只能硬算了, 有人能想出简洁方法吗?

56

Threads

987

Posts

41

Reputation

Show all posts

乌贼 posted 2020-2-23 16:29
最大值不是超级数吧?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:27 GMT+8

Powered by Discuz!

Processed in 0.108454 seconds, 47 queries