Forgot password?
 Create new account
View 157|Reply 6

$\int_0^{99}\abs{\sin x}/x$

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-2-2 18:59:20 |Read mode
由\begin{multline*}\int_0^t \sin x/x\rmd x =\rm Si(t)\end{multline*}如何得出πππππππππππππππππππππππππππππππ Untitled.gif $123456789+-\Bigl(\Big)$
Last edited by hbghlyj at 2024-2-5 08:20:00

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-2 21:23:48
是否成立\[0<\lim_{N\to\infty}{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}<\infty\]

Comment

把 $\sin x$ 缩放成 $1$ ($0$ 附近缩放成常数).  Posted at 2024-2-5 13:07

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-5 16:12:05
hbghlyj 发表于 2024-2-2 13:23
是否成立\[0<\lim_{N\to\infty}{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}<\infty\]
試一下:
\[\int_1^N \frac{|\sin(x)|}{x}\rmd x \leq \int_1^N \frac1{x}\rmd x=\log N\]
因此
\[{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}={C_1+\int_1^N\abs{\sin(x)}/x\rmd x\over\log N}\le{C_1\over\log N}+1\]
其中$C_1=\int_0^N\abs{\sin(x)}/x\rmd x$.

令$N\to\infty$得到
\[\lim_{N\to\infty}{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}\le1\]

如何證明另一邊? $0<\lim_{N\to\infty}{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-5 16:17:28
hbghlyj 发表于 2024-2-2 10:59
由\begin{multline*}\int_0^t \sin x/x\rmd x =\rm Si(t)\end{multline*}如何得出$\displaystyle\int_0^{99}\abs{\sin(x)}/x\rmd x=\ldots$
\begin{align*}
\int_0^{99} \left| \sin(x) \right| / x \, \mathrm{d}x &= \int_0^\pi \frac{\sin(x)}{x} \, \mathrm{d}x - \int_\pi^{2\pi} \frac{\sin(x)}{x} \, \mathrm{d}x + \cdots - \int_{31\pi}^{99} \frac{\sin(x)}{x} \, \mathrm{d}x \\
&= \operatorname{Si}(\pi) - (\operatorname{Si}(2\pi) - \operatorname{Si}(\pi)) + \cdots - (\operatorname{Si}(99) - \operatorname{Si}(31\pi))
\end{align*}
就得出了那個式子。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-5 16:36:50
hbghlyj 发表于 2024-2-5 08:12
如何證明另一邊? $0<\lim_{N\to\infty}{\int_0^N\abs{\sin(x)}/x\rmd x\over\log N}$
試一下:
  1. def f(N):
  2.     return numerical_integral(abs(sin(x))/x,0, N)[0]/ log(N.n())
  3. f(10000000)
Copy the Code

0.713411316868682

有可能極限是0嗎?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-2-5 20:40:19
hbghlyj 发表于 2024-2-5 16:36
試一下:

0.713411316868682
$$
\int_{k\pi}^{(k+1)\pi}\frac{|\sin x|}{(k+1)\pi}\operatorname dx\leq \int_{k\pi}^{(k+1)\pi}\frac{|\sin x|}{x}\operatorname dx\leq \int_{k\pi}^{(k+1)\pi}\frac{|\sin x|}{k\pi}\operatorname dx.
$$
从而极限落在
$$
\lim_{N\to\infty}\frac{2\cdot \frac{1}{\pi}(1+2^{-1}+\cdots +N^{-1})}{\log (N\pi)}=\frac{2}{\pi}
$$

$$
\lim_{N\to\infty}\frac{2\cdot \frac{1}{\pi}(2^{-1}+\cdots +N^{-1})}{\log (N\pi)}=\frac{2}{\pi}
$$
之间(分子分母发散). 也就是 $\frac{2}{\pi}$.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list