The set $A$ can be described in a more convenient way as\[A=\left \{\sum_{k=1}^\infty x_kc_ke_k\,:\,|x_k|\le 1\right \}\]
設\[A\ni u_n:=\sum_{k=1}^\infty x_k^{(n)}c_ke_k\]需要找出一個$u_n$的收敛子列:
$\abs{x_k^{(n)}}\le1$有界$\xRightarrow{\text{Bolzano-Weierstrass}} x_k^{(1)},x_k^{(2)},\dots$ 存在收敛子列
$\xRightarrow{\text{diagonalization}}$存在子列$u_{n_1},u_{n_2}\dots$ 使 $x^{(n_1)}_k,x^{(n_2)}_k,\dots$對每個$k$均收敛(到$x_k$) 設 $u:=\sum_{k=1}^\infty x_kc_ke_k$,就能證明 $u_{n_j}\to u$(見math.stackexchange.com/a/4707695/) |