Forgot password?
 Create new account
View 141|Reply 2

$e^{i x} θ(x)$的Fourier transform

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-2-14 04:41:56 |Read mode
wolframalpha.com/input?i=integral_%28-%E2%88% … %28-i+%CF%89+x%29+dx
Untitled.gif
$\displaystyle\int_{-\infty}^\infty e^{i x} θ(x)\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0

$\displaystyle\int_0^\infty e^{i x}\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0
如何計算

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-14 04:46:26
MSP604122d61hh33fgc8h5700002a8071gbc8h8955c.gif
$\displaystyle\int_{-∞}^∞ e^{i x} \operatorname{sgn}(x)\frac1{2 i} e^{-i ω x}\rmd x = \frac1{1 - ω}$和上面一樣,竟然

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-14 04:53:57
hbghlyj 发表于 2024-2-13 20:41
$\displaystyle\int_0^\infty e^{i x}\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0
如何計算
懂了!For Im(ω)<0,當$x\to+\infty$時$e^{i(1-ω)x}\to0$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list