Forgot password?
 Register account
View 352|Reply 2

$e^{i x} θ(x)$的Fourier transform

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2024-2-14 04:41 |Read mode
wolframalpha.com/input?i=integral_(-∞)^∞ (exp … (x))/i e^(-i ω x) dx
Untitled.gif
$\displaystyle\int_{-\infty}^\infty e^{i x} θ(x)\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0

$\displaystyle\int_0^\infty e^{i x}\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0
如何計算

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-14 04:46
MSP604122d61hh33fgc8h5700002a8071gbc8h8955c.gif
$\displaystyle\int_{-∞}^∞ e^{i x} \operatorname{sgn}(x)\frac1{2 i} e^{-i ω x}\rmd x = \frac1{1 - ω}$和上面一樣,竟然

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-14 04:53
hbghlyj 发表于 2024-2-13 20:41
$\displaystyle\int_0^\infty e^{i x}\frac1i e^{-i ω x}\rmd x=\frac1{1-\omega}$ for Im(ω)<0
如何計算
懂了!For Im(ω)<0,當$x\to+\infty$時$e^{i(1-ω)x}\to0$

Mobile version|Discuz Math Forum

2025-6-5 01:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit