Forgot password?
 Create new account
View 124|Reply 1

卡瓦列里原理

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-2-26 19:33:31 |Read mode
en.wikipedia.org/wiki/Lorentz_space#Properties
for any $p$, $L^{p,p}=L^{p}$, which follows from Cavalieri's principle.

从 卡瓦列里原理 怎么得出 $L^{p,p}=L^{p}$?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-26 19:37:54
我想,我们须将 $f$ 的图象下方的区域切成水平部分,但不知道具体怎么做。
$ {\displaystyle d_{f}(\alpha ):=\mu (\{x\in X:|f(x)|>\alpha \}).}$
$ {\displaystyle f^{\ast }(t):=\inf\{\alpha \in \mathbf {R} ^{+}:d_{f}(\alpha )\leq t\}}$
The two functions $| f |$ and $f^∗$ are equimeasurable, meaning that
$ \displaystyle \mu {\bigl (}\{x\in X:|f(x)|>\alpha \}{\bigr )}=\lambda {\bigl (}\{t>0:f^{\ast }(t)>\alpha \}{\bigr )},\quad \alpha >0$


例如 $f(x)={\tfrac {1}{x}}\chi _{(0,1)}(x)$
那么 $\{x:|f(x)|>\alpha\}=\frac1\alpha,\quad\alpha>0$
$d_f(\alpha)=\frac1\alpha,\quad\alpha>0$
$f^{\ast }(t)=\inf\{\alpha \in \mathbf {R} ^{+}:\frac1\alpha\leq t\}=\frac1t$
那么在这个例子中 $f=f^\ast$

因為$f$本身decreasing 所以$f$的decreasing rearrangement function等於$f$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list