Forgot password?
 Register account
View 128|Reply 0

等截共轭

[Copy link]

3156

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2024-3-22 22:30 |Read mode
$P$的等截共轭是$P'$.
根据等截共轭的定义容易得出:
已知$P$的重心坐标\(=x : y : z\),那么$P'$的重心坐标\(=\frac{1}{x} : \frac{1}{y} : \frac{1}{z}\)。
根据重心坐标转换为三线坐标:
已知$P$的三线坐标\(=p : q : r\),
那么$P$的重心坐标\(=ap : bq : cr\),
那么$P'$的重心坐标\(=\frac{1}{ap} : \frac{1}{bq} : \frac{1}{cr}\),
那么$P'$的三线坐标\(=\frac{1}{a^2 p} : \frac{1}{b^2 q} : \frac{1}{c^2 r}\)。其中\(a\)、\(b\)、\(c\)是三角形的三边长
所以,在Asymptote中,等截共轭的作法:
  1. import geometry;
  2. point isotomicconjugate(triangle t, point M)
  3. {
  4.   trilinear tr=trilinear(t,M);
  5.   return point(trilinear(t,1/(t.a()^2*tr.a),1/(t.b()^2*tr.b),1/(t.c()^2*tr.c)));
  6. }
Copy the Code

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:38 GMT+8

Powered by Discuz!

Processed in 0.015824 second(s), 21 queries

× Quick Reply To Top Edit