Forgot password?
 Create new account
View 116|Reply 5

sinc(t)^n 的导数在[0,∞]可积

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-3-24 00:58:53 |Read mode
Last edited by hbghlyj at 2024-3-25 16:17:00proofwiki.org/wiki/Du_Bois-Reymond_Constants/Example/First
$$\int_0^\infty \abs{\frac \rmd {\rmd t} \left(\frac {\sin t}t\right)^n} \rmd t$$
$n=1$时发散,$n\ge2$时收敛。

如何证明?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-3-25 10:37:41
表述不当, 应该是 $n=1$ 对应第一个 Du Bois-Reymond 常数.

Comment

已修改表述👌  Posted at 2024-3-25 18:07

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-3-25 18:23:08
$f(t)=\frac{\sin t}t$
$$\int_0^\infty f'(t)\rmd t=\lim_{t\to\infty}f(t)=0$$
但需要證明的是,$\int_0^\infty\abs{f'(t)}$发散,如何證明?

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-3-25 18:27:12
\[f'(t) = \begin{cases}
\frac{t \cos(t) - \sin(t)}{t^2} & \text{if } t \neq 0 \\
0 & \text{otherwise}
\end{cases}
\]
在0,$f'(t)$連續。但這好像沒什麼用

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-3-25 23:55:28
\[f'(t)=\frac{t\cos(t)-\sin(t)}{t^2}=0\]
\[t=\tan(t)\]
令$t_0=0$,$t_n$为$t>0$时满足$t=\tan(t)$的第$n$个解,即$t_n>t_{n-1}$,$t_n=\tan(t_n)$

这里不难证明(画个图可一目了然,具体过程略)会有
\[n\pi<t_n<\frac{3\pi}{2}+n\pi\]
且$|t_n-(\frac{3\pi}{2}+n\pi)|$是递减的,还有
\[\lim_{n\to\infty}|t_n-(\frac{3\pi}{2}+n\pi)|=0\]
这会造成$|\sin(t_n)|$递增,且
\[\lim_{n\to\infty}|\sin(t_n)|=|\sin(\frac{3\pi}{2}+n\pi)|=1\]


那么有
\[|\frac{d}{dt}\frac{\sin(t)}{t}|=|\frac{t\cos(t)-\sin(t)}{t^2}|\]
然后
\[\int_0^{+\infty}|\frac{d}{dt}\frac{\sin(t)}{t}|dt=\int_{t_0}^{t_1}|\frac{d}{dt}\frac{\sin(t)}{t}|dt+\int_{t_1}^{t_2}|\frac{d}{dt}\frac{\sin(t)}{t}|dt+...\]
\[=\int_{t_0}^{t_1}|\frac{t\cos(t)-\sin(t)}{t^2}|dt+\int_{t_1}^{t_2}|\frac{t\cos(t)-\sin(t)}{t^2}|dt+...\]
当$n$为奇数时
\[\int_{t_n}^{t_{n+1}}|\frac{t\cos(t)-\sin(t)}{t^2}|dt=\int_{t_n}^{t_{n+1}}\frac{t\cos(t)-\sin(t)}{t^2}dt=\frac{\sin(t)}{t}|_{t_n}^{t_{n+1}}=\frac{\sin(t_{n+1})}{t_{n+1}}-\frac{\sin(t_n)}{t_n}\]
$n$为偶数时
\[\int_{t_n}^{t_{n+1}}|\frac{t\cos(t)-\sin(t)}{t^2}|dt=\int_{t_n}^{t_{n+1}}\frac{-t\cos(t)+\sin(t)}{t^2}dt=-\frac{\sin(t)}{t}|_{t_n}^{t_{n+1}}=\frac{\sin(t_n)}{t_n}-\frac{\sin(t_{n+1})}{t_{n+1}}\]

于是
\[\int_0^{+\infty}|\frac{t\cos(t)-\sin(t)|}{t^2}dt=\left(0-\frac{\sin(t_1)}{t_1}\right)+\left(\frac{\sin(t_2)}{t_2}-\frac{\sin(t_1)}{t_1}\right)+\left(\frac{\sin(t_2)}{t_2}-\frac{\sin(t_3)}{t_3}\right)+...\]
\[=2\sum_{n=1}^\infty\left(\frac{\sin(t_{2n})}{t_{2n}}-\frac{\sin(t_{2n-1})}{t_{2n-1}}\right)=2\sum_{n=1}^\infty\frac{|\sin(t_{n})|}{t_{n}}\]
前面说过,$|\sin(t_n)|$递增,且$n\pi<t_n<\frac{3\pi}{2}+n\pi$,这就有
\[\frac{|\sin(t_n)|}{t_n}>\frac{|\sin(t_1)|}{\frac{3\pi}{2}+n\pi}\]
这个求和当然是不收敛的

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list