|
战巡
Posted at 2024-3-25 23:55:28
\[f'(t)=\frac{t\cos(t)-\sin(t)}{t^2}=0\]
\[t=\tan(t)\]
令$t_0=0$,$t_n$为$t>0$时满足$t=\tan(t)$的第$n$个解,即$t_n>t_{n-1}$,$t_n=\tan(t_n)$
这里不难证明(画个图可一目了然,具体过程略)会有
\[n\pi<t_n<\frac{3\pi}{2}+n\pi\]
且$|t_n-(\frac{3\pi}{2}+n\pi)|$是递减的,还有
\[\lim_{n\to\infty}|t_n-(\frac{3\pi}{2}+n\pi)|=0\]
这会造成$|\sin(t_n)|$递增,且
\[\lim_{n\to\infty}|\sin(t_n)|=|\sin(\frac{3\pi}{2}+n\pi)|=1\]
那么有
\[|\frac{d}{dt}\frac{\sin(t)}{t}|=|\frac{t\cos(t)-\sin(t)}{t^2}|\]
然后
\[\int_0^{+\infty}|\frac{d}{dt}\frac{\sin(t)}{t}|dt=\int_{t_0}^{t_1}|\frac{d}{dt}\frac{\sin(t)}{t}|dt+\int_{t_1}^{t_2}|\frac{d}{dt}\frac{\sin(t)}{t}|dt+...\]
\[=\int_{t_0}^{t_1}|\frac{t\cos(t)-\sin(t)}{t^2}|dt+\int_{t_1}^{t_2}|\frac{t\cos(t)-\sin(t)}{t^2}|dt+...\]
当$n$为奇数时
\[\int_{t_n}^{t_{n+1}}|\frac{t\cos(t)-\sin(t)}{t^2}|dt=\int_{t_n}^{t_{n+1}}\frac{t\cos(t)-\sin(t)}{t^2}dt=\frac{\sin(t)}{t}|_{t_n}^{t_{n+1}}=\frac{\sin(t_{n+1})}{t_{n+1}}-\frac{\sin(t_n)}{t_n}\]
$n$为偶数时
\[\int_{t_n}^{t_{n+1}}|\frac{t\cos(t)-\sin(t)}{t^2}|dt=\int_{t_n}^{t_{n+1}}\frac{-t\cos(t)+\sin(t)}{t^2}dt=-\frac{\sin(t)}{t}|_{t_n}^{t_{n+1}}=\frac{\sin(t_n)}{t_n}-\frac{\sin(t_{n+1})}{t_{n+1}}\]
于是
\[\int_0^{+\infty}|\frac{t\cos(t)-\sin(t)|}{t^2}dt=\left(0-\frac{\sin(t_1)}{t_1}\right)+\left(\frac{\sin(t_2)}{t_2}-\frac{\sin(t_1)}{t_1}\right)+\left(\frac{\sin(t_2)}{t_2}-\frac{\sin(t_3)}{t_3}\right)+...\]
\[=2\sum_{n=1}^\infty\left(\frac{\sin(t_{2n})}{t_{2n}}-\frac{\sin(t_{2n-1})}{t_{2n-1}}\right)=2\sum_{n=1}^\infty\frac{|\sin(t_{n})|}{t_{n}}\]
前面说过,$|\sin(t_n)|$递增,且$n\pi<t_n<\frac{3\pi}{2}+n\pi$,这就有
\[\frac{|\sin(t_n)|}{t_n}>\frac{|\sin(t_1)|}{\frac{3\pi}{2}+n\pi}\]
这个求和当然是不收敛的 |
|