Forgot password
 Register account
View 222|Reply 2

H_n/n的极限

[Copy link]

3208

Threads

7835

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-3-27 01:55 |Read mode
Limit[HarmonicNumber[n]/n, n -> 0]$=\frac{\pi}6$

WolframAlpha 显示 Untitled.gif

1Untitled.gif

3208

Threads

7835

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-3-27 04:21
是因为
$$\frac{H_n}n = \sum_{k=0}^{\infty} \frac{1}{(1 + k)(1 + k + n)}$$
但这个如何证明呢

3208

Threads

7835

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-3-27 04:22
哦。可以用$\frac{1}{(1 + k)(1 + k + n)}=\frac1n(\frac1{1+k}-\frac1{1+k+n})$证明
$$\frac1n\sum_{k=1}^n\frac1k= \sum_{k=0}^{\infty} \frac{1}{(1 + k)(1 + k + n)}
$$
至此都搞清楚了👌

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 21:08 GMT+8

Powered by Discuz!

Processed in 0.014421 seconds, 25 queries