Forgot password?
 Register account
View 337|Reply 2

[几何] 角平分线与定圆相切

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2024-3-29 12:20 |Read mode
点P轨迹为前帖三倍角产生的曲线(Wikipedia)。
点A、B、P满足β+180°=3α,求证:
角APB的平分线与以B为圆心、$\frac{AB}2$为半径的圆相切.
Screenshot 2024-03-29 041809.png

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-29 12:30
Last edited by hbghlyj 2024-3-30 10:08設AD$\perp$PC.
$BC:CA=BP:PA=\sin\beta:\sin\alpha=-\sin3\alpha:\sin\alpha$
$DA:CA=\sin\angle PCA=\sin\frac{\alpha+\beta}2=\cos2\alpha$
$$\frac{DA}{AB}=\frac{DA}{CA}\frac{CA}{AB}=\cos2\alpha\frac{\sin\alpha}{\sin\alpha-\sin3\alpha}=\frac12$$
证毕。
Screenshot 2024-03-29 042547.png

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-30 18:08
才发現,只計算角就能證明
設AD交PB于E,則PA=PE.
$\angle PCA=\frac{\alpha+\beta}2=2\alpha-90$°
$\angle CAD=\angle PCA-90$°$=2\alpha-180$°
$\angle ABE=90$°$-\alpha$
$\angle AEB=180$°$-\angle CAD-\angle ABE=90$°$-\alpha$
$\therefore \angle AEB=\angle ABE$
$\therefore AB=AE=2AD$

Mobile version|Discuz Math Forum

2025-6-5 19:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit