Forgot password?
 Register account
View 269|Reply 1

Dirac delta的积分表示 用sin、cos

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2024-4-3 00:57 |Read mode
§1.17 Integral and Series Representations of the Dirac Delta

\[\delta\left(x-a\right)=\frac{2}{\pi}\int_{0}^{\infty}\cos\left(xt\right)\cos\left(at\right)\,\mathrm{d}t,\]
\[\delta\left(x-a\right)=\frac{2}{\pi}\int_{0}^{\infty}\sin\left(xt\right)\sin\left(at\right)\,\mathrm{d}t,\]
如何证明呢

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-4-4 13:56
$\delta$ 的定义: 对任意 $\mathbb R$ 上的连续函数 $f$, 总有
$$
\int_{\mathbb R} f(x)\delta (x-a)\operatorname dx=f(a).
$$
换言之, $\delta$ 等同于一个线性泛函. 此时仅需证明
$$
f(a)=\int_{\mathbb R}f(x)\int_0^\infty \cos (xt)\cos (at)\operatorname dt\operatorname dx.
$$
不失一般性地假定 $f$ 有紧支撑, $a\geq 0$. 故仅需证明
$$
f(s)=\int_{0}^\infty f(x)\int_0^\infty \cos (xt)\cos (st)\operatorname dt\operatorname dx.
$$
这个等式是不是很熟悉? 这就是 Fourier 的原始公式.

Mobile version|Discuz Math Forum

2025-6-5 01:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit