Forgot password?
 Create new account
View 117|Reply 2

Catalan常数的 33 种表示

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-4-5 01:58:55 |Read mode
33 representations for Catalan's constant
Entry 1. $G=\int_0^1 \frac{\tan ^{-1}(x)}{x}\rmd x$
$\ldots\ldots$
Entry 17. $G=\int_0^{\pi / 2} \sinh ^{-1}(\sin (x))\rmd x$
如何由Entry 1推出Entry 17?

Related threads

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-5 02:02:51
将$\sinh ^{-1}(z)$的积分表示$
\sinh ^{-1}(z)=\int_0^1 \frac{z}{\sqrt{1+t^2 z^2}}\rmd t
$代入Entry 17并交换积分次序,
\[
\int_0^{\pi / 2} \sinh ^{-1}(\sin (x))\rmd x=\int_0^1 \int_0^{\pi / 2} \frac{\sin (x)}{\sqrt{1+t^2 \sin ^2(x)}} \rmd x \rmd t
\]
内层积分为$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}=\frac{\tan^{-1} t}{t}$,就化为了Entry 1.

MSE还有一种方法。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-5 02:20:37
hbghlyj 发表于 2024-4-4 18:02
内层积分为$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}=\frac{\tan^{-1} t}{t}$
补充一下计算过程:$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}\overset{u=\cos x}=\int_{0}^{1}\frac{\rmd u}{\sqrt{1+t^2(1-u^2)}}=\frac1t\int_{0}^{1}\frac{\rmd u}{\sqrt{1+\frac1{t^2}-u^2}}=\frac1t\sin^{-1}(\frac{u}{\sqrt{1+\frac1{t^2}}})|_{u=0}^1=\frac1t\sin^{-1}(\frac1{\sqrt{1+\frac1{t^2}}})=\frac{\tan^{-1} t}{t}$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list