Forgot password?
 Register account
View 269|Reply 2

Catalan常数的 33 种表示

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2024-4-5 01:58 |Read mode
33 representations for Catalan's constant
Entry 1. $G=\int_0^1 \frac{\tan ^{-1}(x)}{x}\rmd x$
$\ldots\ldots$
Entry 17. $G=\int_0^{\pi / 2} \sinh ^{-1}(\sin (x))\rmd x$
如何由Entry 1推出Entry 17?

Related threads

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 02:02
将$\sinh ^{-1}(z)$的积分表示$
\sinh ^{-1}(z)=\int_0^1 \frac{z}{\sqrt{1+t^2 z^2}}\rmd t
$代入Entry 17并交换积分次序,
\[
\int_0^{\pi / 2} \sinh ^{-1}(\sin (x))\rmd x=\int_0^1 \int_0^{\pi / 2} \frac{\sin (x)}{\sqrt{1+t^2 \sin ^2(x)}} \rmd x \rmd t
\]
内层积分为$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}=\frac{\tan^{-1} t}{t}$,就化为了Entry 1.

MSE还有一种方法。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 02:20
hbghlyj 发表于 2024-4-4 18:02
内层积分为$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}=\frac{\tan^{-1} t}{t}$
补充一下计算过程:$\int_{0}^{\pi/2}\frac{\sin(x)\rmd x}{\sqrt{1+t^2 \sin^2 x}}\overset{u=\cos x}=\int_{0}^{1}\frac{\rmd u}{\sqrt{1+t^2(1-u^2)}}=\frac1t\int_{0}^{1}\frac{\rmd u}{\sqrt{1+\frac1{t^2}-u^2}}=\frac1t\sin^{-1}(\frac{u}{\sqrt{1+\frac1{t^2}}})|_{u=0}^1=\frac1t\sin^{-1}(\frac1{\sqrt{1+\frac1{t^2}}})=\frac{\tan^{-1} t}{t}$

Mobile version|Discuz Math Forum

2025-6-5 01:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit