Forgot password?
 Create new account
View 109|Reply 2

$\sin n$的Banach limit

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-4-12 20:59:18 |Read mode
$\phi (x)=\phi (Sx)$所以数列$(-1)^n$的Banach limit为0,那么数列$\sin n$的Banach limit为?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-12 21:05:17
模仿Wikipedia上的例子,很容易就能证明吧:
设$x:=(\sin1,\sin2,\dots)$,则
$\sin(n+2)+\sin(n)-2\cos(1)\sin(n+1)=0$
$\implies\phi(S^2x)+\phi(x)-2\cos(1)\phi(Sx)=0$
$\implies\phi(x)+\phi(x)-2\cos(1)\phi(x)=0$
而$2-2\cos(1)\ne0$
$\implies\phi(x)=0$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-12 21:11:21
可以用Cesàro summation推出Almost convergent sequence
\[
\frac1n\sum_{k=1}^n \sin (k)=\frac{1}{2n}\left(\sin (n)-\cot \left(\frac{1}{2}\right) \cos (n)+\cot \left(\frac{1}{2}\right)\right)\to0
\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list