Forgot password
 Register account
View 4795|Reply 15

[数列] 数列 $a_1=a_2=1,a_n=\frac{a^2_{n-1}+2}{a_{n-2}}$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-8-22 00:12 |Read mode
提问

已知$a_1=a_2=1,a_n=\dfrac{a^2_{n-1}+2}{a_{n-2}}(n \geqslant 3)$。
证明:数列$\{a_n\}$中的一切项都是整数。

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-8-22 01:31
这题居然会做。。
方法先猜后证。
计算出数列前几项:1,1,3,11,41,153,……
猜测$\{a_n\}$有递推式:$a_{n+2}=pa_{n+1}+qa_n$
当$n=1,2$时有
$3=p+q$
$11=3p+q$
解得:$p=4,q=-1$
因此应该有:$a_{n+2}=4a_{n+1}-a_n$
下面再使用数归证明即可。
最后易说明数列各项均是整数.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-8-22 01:45
回复 2# Tesla35

居然能求通项这么牛笔……

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-8-22 12:13
有人愿意具体数归一下么?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-8-22 16:41
和东南题目有联系

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-8-22 16:41
回复 5# 其妙

give a link……

4

Threads

57

Posts

0

Reputation

Show all posts

零定义 posted 2013-8-22 17:29
回复 2# Tesla35
灰常的漂亮!我想过用数论去弄,但杯具了…学习了,增见识了…
回复 4# isee
这个归纳很简单的咧
睡自己的觉,让别人说去...

11

Threads

29

Posts

0

Reputation

Show all posts

nash posted 2013-8-22 18:35
QQ图片20130822183034.jpg
东南的那道题比这个要难
证明平方数的
方法和这个类似吧

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-8-22 18:58
回复 8# nash

你这么一写我又感觉好像在哪见过……

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-8-23 09:16
再贴一题,2013年中科大数学夏令营

数列$\{a_n\}$的定义是:$a_1=1,a_2=1,a_3=2,a_{n+3}=\frac{a_{n+1}a_{n+2}+7}{a_n},n>0$.证明:该数列中的项都是正整数.
PS:猜测肯定可以写成线性的
地狱的死灵 posted 2013-8-23 10:38
回复 10# Tesla35


    还是用皮蛋老师的方法:

$\begin{array}{l}
a_{n + 3} a_n  = a_{n + 1} a_{n + 2}  + 7 \\
a_{n + 2} a_{n - 1}  = a_n a_{n + 1}  + 7 \\
a_{n + 3} a_n  - a_{n + 2} a_{n - 1}  = a_{n + 1} a_{n + 2}  - a_n a_{n + 1}  \\
a_n (a_{n + 3}  + a_{n + 1} ) = a_{n + 2} (a_{n + 1}  + a_{n - 1} ) \\
\end{array}$

n为偶数时,$\frac{{a_{n + 3}  + a_{n + 1} }}{{a_{n + 2} }} = \frac{a_3  + a_1 }{a_2 } = 3$
n为奇数时,$\frac{{a_{n + 3}  + a_{n + 1} }}{{a_{n + 2} }} = \frac{a_4  + a_2 }{a_3 } = 5$

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-8-23 11:44
回复 11# 地狱的死灵


    为何叫皮蛋?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-8-23 14:37
东南的那道题比这个要难
证明平方数的
方法和这个类似吧
nash 发表于 2013-8-22 18:35

向诸位学习了。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-8-23 17:16
回复  其妙

give a link……
kuing 发表于 2013-8-22 16:41
博客图片.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-8-23 17:29
回复 14# 其妙

thank you
第一题还是前两天发过的呢

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-8-23 22:52
回复 15# kuing
再来个第二天的
都没的答案的,郁闷
博客图片.jpg

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:56 GMT+8

Powered by Discuz!

Processed in 0.014436 seconds, 25 queries