Forgot password?
 Create new account
View 124|Reply 2

[函数] $\sqrt{58+\sqrt{2}}$用有理数度的sin/cos写出?

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2024-6-11 19:16:32 |Read mode
$\sqrt{58+\sqrt{2}}$
$=2 \sqrt{29} \cos \left(\dfrac{1}{2} \tan ^{-1}(41)\right)$
$=\dfrac{\sqrt{1-41 i}+\sqrt{1+41 i}}{\sqrt[4]{2}}$
$=\dfrac{1}{2}(\sqrt{-20-21 i}+5+i 2) \sqrt{1+i} 2^{3 / 4}$
$=(5+2 i) \sqrt[8]{-1}+\dfrac{(3-7 i) \sqrt[8]{-1}}{\sqrt{2}}$
用有理数度的sin/cos写出(不含根式)?

Sage
  1. R.<x> = CyclotomicField(16)['x']
  2. f = x^4 - 116*x^2 + 3362
  3. f.factor()
Copy the Code
$$\small(x - 5 \zeta_{16}^{7} + 2 \zeta_{16}^{5} - 2 \zeta_{16}^{3} + 5 \zeta_{16}) \cdot (x - 2 \zeta_{16}^{7} - 5 \zeta_{16}^{5} + 5 \zeta_{16}^{3} + 2 \zeta_{16}) \cdot (x + 2 \zeta_{16}^{7} + 5 \zeta_{16}^{5} - 5 \zeta_{16}^{3} - 2 \zeta_{16}) \cdot (x + 5 \zeta_{16}^{7} - 2 \zeta_{16}^{5} + 2 \zeta_{16}^{3} - 5 \zeta_{16})$$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2024-6-11 19:32:08
找到了:
\begin{align*}\sqrt{58+\sqrt{2}}&=\frac{1}{2}(7 \sqrt{2}-4) \csc \left(\frac{\pi}{8}\right)\\
&=\color{blue}{\frac{7\sin\left(\frac\pi4\right)-2}{\sin\left(\frac{\pi}{8}\right)}}
\end{align*}
验证:wolframalpha.com/input?i=%287+sin%28%CF%80%2F … +csc%28%CF%80%2F8%29
右边用到的角是$\frac{\pi}{8}$。它是怎么得出的?怎样从$\sqrt{58+\sqrt{2}}$看出$\frac\pi8$?

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2024-6-12 15:46:12
$\sqrt{n+\sqrt{n}},n=m^2+1,n\inZ^+$
$f(X)=X^4-2 n X^2+n(n-1)$.


$\sqrt{10+\sqrt{10}}$
$=\sqrt[4]{\frac{5}{2}}(\sqrt{1-3 i}+\sqrt{1+3 i})$
$=\frac{1}{2} \sqrt[4]{5} 2^{3 / 4}(\sqrt{2+i}+\sqrt{-1-2 i}) \sqrt{1+i}$
$=2 \sqrt{5} \cos \left(\frac{1}{2} \tan ^{-1}(3)\right)$


如何用有理数度的sin/cos写出(不含根式)?

手机版Mobile version|Leisure Math Forum

2025-4-21 01:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list