Forgot password?
 Create new account
View 124|Reply 1

[函数] 某个高次方程根的三角函数表示

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2024-6-24 18:40:32 |Read mode
Last edited by 青青子衿 at 2024-6-24 20:27:00如下表达式中,嵌套根式里还能分离出来一个二次代数数吗?
\begin{align*}
x_6=\frac{55}{3}+7 \sqrt{5}+\frac{1}{3}(5\sqrt{2}+2\sqrt{10}) \sqrt{159+11 \sqrt{5}}\cos \left(\frac{1}{3} \arctan\left(\frac{6 (1873-828\sqrt{5}) \sqrt{363-42 \sqrt{5}}}{80209}\right)\right)
\end{align*}
  1. 2000 - 21000*x + 21625*x^2 - 8650*x^3 + 1555*x^4 - 110*x^5 + x^6
  2. MinimalPolynomial[
  3. 55/3 + 7 Sqrt[5] +
  4.   1/3 (5 (74720 + 33417 Sqrt[5] -
  5.        6 I (20 + 9 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]]))^(1/3) +
  6.   1/3 (5 (74720 + 33417 Sqrt[5] +
  7.        6 I (20 + 9 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]]))^(1/3), x]
  8. NSolve[2000 - 21000 x + 21625 x^2 - 8650 x^3 + 1555 x^4 - 110 x^5 +
  9.    x^6 == 0, x]
  10. 55/3 + 7 Sqrt[5] +
  11.   1/3 (5 (74720 + 33417 Sqrt[5] -
  12.        6 I (20 + 9 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]]))^(1/3) +
  13.   1/3 (5 (74720 + 33417 Sqrt[5] +
  14.        6 I (20 + 9 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]]))^(
  15.    1/3) // ComplexExpand
  16. MinimalPolynomial[
  17. 55/3 + 7 Sqrt[5] + (Sqrt[2] (5 + 2 Sqrt[5]) Sqrt[159 + 11 Sqrt[5]])/
  18.    3 Cos[1/3 ArcTan[(6 (1873 - 828 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]])/
  19.       80209]], x]
  20. 55/3 + 7 Sqrt[5] + (Sqrt[2] (5 + 2 Sqrt[5]) Sqrt[159 + 11 Sqrt[5]])/
  21.    3 Cos[1/3 ArcTan[(6 (1873 - 828 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]])/
  22.       80209]] // N
  23. 55/3 + 7 Sqrt[5] - (Sqrt[2] (5 + 2 Sqrt[5]) Sqrt[159 + 11 Sqrt[5]])/
  24.    3 Cos[1/3 ArcTan[(6 (1873 - 828 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]])/
  25.        80209] + \[Pi]/3] // N
  26. 55/3 + 7 Sqrt[5] - (Sqrt[2] (5 + 2 Sqrt[5]) Sqrt[159 + 11 Sqrt[5]])/
  27.    3 Cos[1/3 ArcTan[(6 (1873 - 828 Sqrt[5]) Sqrt[363 - 42 Sqrt[5]])/
  28.        80209] - \[Pi]/3] // N
  29. 55/3 - 7 Sqrt[5] - (Sqrt[2] (5 - 2 Sqrt[5]) Sqrt[159 - 11 Sqrt[5]])/
  30.    3 Cos[1/3 ArcTan[(6  (1873 + 828 Sqrt[5]) Sqrt[363 + 42 Sqrt[5]])/
  31.       80209]] // N
  32. 55/3 - 7 Sqrt[5] + (Sqrt[2] (5 - 2 Sqrt[5]) Sqrt[159 - 11 Sqrt[5]])/
  33.    3 Cos[1/3 ArcTan[(6  (1873 + 828 Sqrt[5]) Sqrt[363 + 42 Sqrt[5]])/
  34.        80209] + \[Pi]/3] // N
  35. 55/3 - 7 Sqrt[5] + (Sqrt[2] (5 - 2 Sqrt[5]) Sqrt[159 - 11 Sqrt[5]])/
  36.    3 Cos[1/3 ArcTan[(6  (1873 + 828 Sqrt[5]) Sqrt[363 + 42 Sqrt[5]])/
  37.        80209] - \[Pi]/3] // N
Copy the Code

Related threads

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-6-24 19:10:21
标题指的高次方程就是代码里的 2000 - 21000*x + 21625*x^2 - 8650*x^3 + 1555*x^4 - 110*x^5 + x^6 吗?它可以分解
\begin{align*}
&2000-21000x+21625x^2-8650x^3+1555x^4-110x^5+x^6\\
={}&\left(-650+290\sqrt5-\frac{105}2\left(-7+3\sqrt5\right)x+\left(-55+21\sqrt5\right)x^2+x^3\right)\\
&\times\left(-650-290\sqrt5-\frac{105}2\left(-7-3\sqrt5\right)x+\left(-55-21\sqrt5\right)x^2+x^3\right).
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list