Forgot password?
 Register account
View 309|Reply 6

[不等式] 不等式证明

[Copy link]

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

guanmo1 Posted 2024-7-17 22:57 From mobile phone |Read mode
Last edited by hbghlyj 2025-3-19 08:21$a_i>0, \prod_{i=1}^n a_i=1$, 求证: $2 \sum_{i=1}^n \frac{1}{\sqrt[3]{a_i^2+7 a_i}} \geq n$.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2024-7-17 23:13
\[f(x)=\frac 1{\sqrt[3]{e^{2x}+7e^x}}\]
在 `\Bbb R` 内下凸,Jensen 完事。

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

 Author| guanmo1 Posted 2024-7-18 11:12
kuing 发表于 2024-7-17 23:13
\[f(x)=\frac 1{\sqrt[3]{e^{2x}+7e^x}}\]
在 `\Bbb R` 内下凸,Jensen 完事。
有无其它办法?感觉用均值会放过了。

4

Threads

28

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted 2024-7-18 12:07
只需证明以下不等式:
$$\dfrac2{\sqrt[3]{x^2+7x}}\geqslant -\dfrac38\ln x+1\tag{$*$}$$
再分别取 $x=a_1,a_2,\cdots,a_n$ 并求和,即得待证结论。


要证 $(*)$ 式成立,只需证
$$\underbrace{\left(-\dfrac38\ln x+1\right)^3(x^2+7x)}_{f(x)}\leqslant8$$
考察左式导数:
$$\begin{aligned}
f'(x)&=3\left(-\dfrac38\ln x+1\right)^2\left(-\dfrac3{8x}\right)(x^2+7x)+\left(-\dfrac38\ln x+1\right)^3(2x+7)\\
&=\dfrac18\left(-\dfrac38\ln x+1\right)^2\underbrace{[-9(x+7)+(2x+7)(-3\ln x+8)]}_{g(x)}
\end{aligned}$$
易知 $g(1)=0$ 且 $g(x)$ 单调减。
分析可得 $f(x)$ 有最大值 $f(1)=8$,证毕。

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

 Author| guanmo1 Posted 2024-7-18 15:12
Last edited by guanmo1 2024-7-19 08:31
ic_Mivoya 发表于 2024-7-18 12:07
只需证明以下不等式:
$$\dfrac2{\sqrt[3]{x^2+7x}}\geqslant -\dfrac38\ln x+1\tag{$*$}$$
再分别取 $x=a_ ...
   系数-3/8怎么得来的,在g(x)导函数那里待定系数吗?

4

Threads

28

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted 2024-7-19 23:01
实际上这可以理解为切线放缩:$y=\dfrac2{\sqrt[3]{e^{2x}+7e^x}}$ 在 $x=1$ 处的切线是 $y=-\dfrac38x+1$。

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

 Author| guanmo1 Posted 2024-7-23 11:13
ic_Mivoya 发表于 2024-7-19 23:01
实际上这可以理解为切线放缩:$y=\dfrac2{\sqrt[3]{e^{2x}+7e^x}}$ 在 $x=1$ 处的切线是 $y=-\dfrac38x+1$ ...

Mobile version|Discuz Math Forum

2025-6-4 21:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit