Forgot password?
 Register account
View 249|Reply 2

初中代数题

[Copy link]

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

nttz Posted 2024-10-19 18:20 |Read mode
55.png 66.png
如何严格的逻辑上证明

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-10-19 18:44
第一题. 对正整数 $p$ 和 $q$, 总有
\begin{equation}
|p-q|=\max \{p,q\}-\min\{p,q\}.
\end{equation}
若 $a_1>b_1$, 则数列 $\{a_k\}$ 与 $\{b_k\}$ 唯一确定, 计算得答案 $n^2$.

若 $a_1\leq b_1$, 则存在最大的 $k$ 使得 $a_k\leq b_k$. 此时原式等于
\begin{equation}
(b_1+\cdots +b_k-b_{k+1}-\cdots -b_n)-(a_1+\cdots +a_k-a_{k+1}-\cdots -a_n).
\end{equation}
显然最大的 $n$ 个数取了加号, 最小的 $n$ 个数取了减号. 答案同 $a_1>b_1$ 情况.

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

 Author| nttz Posted 2024-10-19 21:50
Czhang271828 发表于 2024-10-19 18:44
第一题. 对正整数 $p$ 和 $q$, 总有
\begin{equation}
|p-q|=\max \{p,q\}-\min\{p,q\}.
good!,第二题说不清逻辑,无法证明唯一

Mobile version|Discuz Math Forum

2025-6-6 06:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit