Forgot password?
 Create new account
View 102|Reply 0

[函数] Lagrange基多项式

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-11-3 19:06:17 |Read mode
Iran 2024 NMO, p3
给定一个整数 $n\geq 2$ 和实数 $x_1<x_2<\cdots < x_n$。函数 $f: \mathbb R \to \mathbb R$ 定义为
$$
f(x) = \sum_{i=1}^{n}\left | \dfrac{(x-x_1)(x-x_2)\cdots (x-x_{i-1})\cdot (x-x_{i+1})\cdots (x-x_n) }{(x_i-x_1)(x_i-x_2)\cdots (x_i-x_{i-1})\cdot (x_i-x_{i+1})\cdots (x_i-x_n) } \right |
$$
证明存在 $k\in\{1,2,\cdots,n-1\}$ 使得对于所有 $x\in (x_k,x_{k+1})$,都有 $f(x)< \sqrt n$。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list