Forgot password?
 Create new account
View 130|Reply 3

[几何] 三角形中的求值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-11-23 20:26:50 |Read mode
已知$\triangle ABC$的三边分别为$a,b,c$,面积为$S$,三个内角分别为$\dfrac{\pi}{7},\dfrac{2\pi}{7},\dfrac{4\pi}{7}$,求$\dfrac{a^2+b^2+c^2}{4S}$的值。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-11-23 21:22:34
由余弦定理及面积公式有
\[\frac{\sum a^2}{4S}=\frac{\sum(b^2+c^2-a^2)}{4S}=\frac{\sum2bc\cos A}{\frac{abc}R}=\sum\frac{2R\cos A}a=\sum\cot A,\]
记 `f=\sum\cot A`,则由恒等式 `\sum\cot A\cot B=1` 得
\[f^2=2+\sum\cot^2A=2+\cot^2\frac\pi7+\cot^2\frac{2\pi}7+\cot^2\frac{4\pi}7,\]
根据之前这帖:kuing.cjhb.site/forum.php?mod=viewthread&tid=4148 里面得到的恒等式
\[\sum_{k=1}^n\cot^2\frac{k\pi}{2n+1}
=\frac{C_{2n+1}^3}{C_{2n+1}^1}=\frac{n(2n-1)}3,\]
取 `n=3` 即得
\[\cot^2\frac\pi7+\cot^2\frac{2\pi}7+\cot^2\frac{3\pi}7=5,\]
而 `\cot^2(3\pi/7)=\cot^2(4\pi/7)`,所以代入前面就得到 `f^2=2+5`,即答案为 `\sqrt7`。

Comment

这个方法N!
我是将所求式的分子与公母全转化为角的余弦来做,也蛮麻烦的  Posted at 2024-11-23 22:47
分子与分母  Posted at 2024-11-23 22:47

手机版Mobile version|Leisure Math Forum

2025-4-22 03:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list