Forgot password?
 Register account
View 249|Reply 2

[几何] 旋转的乘积

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2024-11-30 08:56 |Read mode
向量$v_1,v_2\inR^3$的夹角为$a$
先绕$v_1$转$s$角度,再绕$v_2$转$t$角度,是一个旋转,旋转角为多少

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-11-30 09:03
  1. << Quaternions`
  2. Quaternion[Cos[t/2],Sin[t/2]Cos[a],Sin[t/2]Sin[a],0]**Quaternion[Cos[s/2],Sin[s/2],0,0]
Copy the Code
的实部为 $\cos\left(\frac{s}{2}\right) \cos \left(\frac{t}{2}\right)-\cos (a) \sin \left(\frac{s}{2}\right) \sin \left(\frac{t}{2}\right)$.
所以,两个旋转之积的旋转角为\[2\cos^{-1}\left(\cos \left(\frac{s}{2}\right) \cos \left(\frac{t}{2}\right)-\cos (a) \sin \left(\frac{s}{2}\right) \sin \left(\frac{t}{2}\right)\right)\]是否正确

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2025-1-20 19:23
两个旋转之积的旋转角不大于这两个旋转角之和。

定义两个旋转$A,B$的距离$d(A,B)$为$AB^{-1}$的旋转角,则$d(A,B)+d(B,C)\le d(A,C)$.

Mobile version|Discuz Math Forum

2025-6-5 07:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit