Forgot password?
 Create new account
View 124|Reply 1

[几何] e=2双曲线上动点、焦点、顶点形成的三角形旁心在双曲线上

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2024-12-14 23:03:30 |Read mode
Last edited by hbghlyj at 2024-12-18 14:11:00设$C$是双曲线$y^2=3x^2-2x-1$上右支上任一点,$A(-1,0),B(1,0)$,发现
$\triangle ABC$的旁心$J$在双曲线左支上,请问如何证明呢?

相关:$\triangle ABJ$的内心在双曲线左支上,见双曲线上动点、焦点、顶点形成的三角形内心在双曲线上

(tan⁻¹(y / (x + 1)) + π) / (tan⁻¹(y / (1 - x)) + π) = k
取$k=2$得$\dfrac{\tan ^{-1}\left(\frac{y}{x+1}\right)+\pi}{\tan ^{-1}\left(\frac{y}{1-x}\right)+\pi}=2$
Solve[(Pi + ArcTan[y/(1 + x)])/(Pi + ArcTan[y/(1 - x)]) == 2, y]
$y=\pm\sqrt{3 x^2-2 x-1}$

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-12-18 22:33:56
不妨设 `C` 在第一象限。

要证 `J` 在左支,等价于证
\[\angle JAB=2\angle JBA,\]
由旁心知上式等价于
\[90\du-\frac12\angle CAB=2\left(90\du-\frac12\angle CBA\right),\]
去分母整理为
\[2\angle CBA-180\du=\angle CAB,\]
由 `C` 在第一象限可知上式左右两边都在 `0` 到 `90\du` 之间,所以上式等价于以下的
\begin{gather*}
\tan(2\angle CBA-180\du)=\tan\angle CAB,\\
\frac{2\tan\angle CBA}{1-\tan^2\angle CBA}=\tan\angle CAB,\\
\frac{-2k_{CB}}{1-k_{CB}^2}=k_{CA},
\end{gather*}
设 `C(x,y)`,则上式化为
\[\frac{-2\cdot\frac y{x-1}}{1-\frac{y^2}{(x-1)^2}}=\frac y{x+1},\]
去分母整理正是 `y^2=3x^2-2x-1`,即得证。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list