|
青青子衿
Posted 2025-5-18 14:56
Last edited by 青青子衿 2025-5-19 06:46青青子衿 发表于 2025-4-10 21:15
下面这个好像也是初等的,有办法解决吗?
\begin{align*}
\int\frac{\mathrm{d}x}{\sqrt[3]{x^3-3x^2-6x-1}}
\end{align*}
凑出来了
\begin{align*}
\int\frac{\mathrm{d}x}{\sqrt[3]{x^3-3x^2-3x-1}}
&=\frac{3}{2}{\large\int}\frac{\mathrm{d}\left(\frac{x-1}{\sqrt[3]{x^3-3 x^2-3 x-1}}\right)}{1-\left(\frac{x-1}{\sqrt[3]{x^3-3 x^2-3 x-1}}\right)^3}\\
&\qquad\qquad
+
\frac{1}{2}{\large\int}\frac{\mathrm{d}\left(\frac{x+1}{\sqrt[3]{x^3-3 x^2-3 x-1}}\right)}{1+\left(\frac{x+1}{\sqrt[3]{x^3-3 x^2-3 x-1}}\right)^3}\\
\int\frac{\mathrm{d}x}{\sqrt[3]{x^3-3x^2-6x-1}}
&=\frac{4}{3}{\large\int}\frac{\mathrm{d}\left(\frac{x-1}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)}{1-\left(\frac{x-1}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)^3}\\
&\qquad\qquad+
\frac{1}{3}{\large\int}\frac{\mathrm{d}\left(\frac{x+2}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)}{1-\left(\frac{x+2}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)^3}\\
&\qquad\qquad\qquad\quad+\frac{2}{3}{\large\int}\frac{\mathrm{d}\left(\frac{2 x+1}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)}{1+\left(\frac{2 x+1}{\sqrt[3]{x^3-3 x^2-6 x-1}}\right)^3}\\
\end{align*}
- int(convert(1/(x^3 - 3*x^2 - 3*x - 1)^(1/3), RootOf), x)
- int(convert(1/(x^3 - 3*x^2 - 6*x - 1)^(1/3), RootOf), x)
Copy the Code- 3/2*D[(-1 + x)/(-1 - 3 x - 3 x^2 + x^3)^(1/3), x]/(
- 1 - ((-1 + x)/(-1 - 3 x - 3 x^2 + x^3)^(1/3))^3) +
- 1/2*D[(1 + x)/(-1 - 3 x - 3 x^2 + x^3)^(1/3), x]/(
- 1 + ((1 + x)/(-1 - 3 x - 3 x^2 + x^3)^(1/3))^3) // Factor
- 4/3*D[(-1 + x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3), x]/(
- 1 - ((-1 + x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3))^3) +
- 1/3*D[(2 + x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3), x]/(
- 1 - ((2 + x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3))^3) +
- 2/3*D[(1 + 2 x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3), x]/(
- 1 + ((1 + 2 x)/(-1 - 6 x - 3 x^2 + x^3)^(1/3))^3) // Factor
Copy the Code |
|