Forgot password?
 Create new account
View 104|Reply 1

[数列] 证明$n\ge4$ 的多项式$f_n-m_n$ 的次数为$2^{n-1}-2n$?

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2025-1-4 19:31:10 |Read mode

\begin{align*}P_n&=\prod_{\substack{\mu_1,\dots,\mu_n\in\{\pm1\}\\\mu_1\dots\mu_n=1}}\left(x-\sum_{k=1}^n\mu_ke^{k\pi i/(n+1)}\right)\\
Q_n&=\prod_{\substack{\mu_1,\dots,\mu_n\in\{\pm1\}\\\mu_1\dots\mu_n=-1}}\left(x-\sum_{k=1}^n\mu_ke^{k\pi i/(n+1)}\right)\\[1em]
f_n&=\frac{P_n+Q_n}2\\[1em]
m_n&=\prod_{\mu_1,\dots,\mu_{n-1}\in\{\pm1\}}\left(x-\sum_{k=1}^{n-1}\mu_ke^{k\pi i/n}\right)\end{align*}
因此,$f_n$ 和 $m_n$ 的首项均为 $x^{2^{n-1}}$。

如何证明多项式 $$f_n-m_n$$ 对于 $n=2,3$ 等于 $0$,对于 $n\ge4$ 的次数为$2^{n-1}-2n$?
也发到MSE问问。

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-4 19:32:03

最高次项系数有何规律?

  1. f[n_]:=Module[{P=x,Q=1,s},
  2. Do[s=Exp[I i Pi/(n+1)];
  3. {P,Q}={(P/. x->x-s)(Q/. x->x+s),(P/. x->x+s)(Q/. x->x-s)},{i,1,n}];
  4. (P+Q)/2]
  5. m[n_]:=Module[{poly=x,s},Do[s=Exp[I i Pi/n];
  6. poly=(poly/. x->x-s)(poly/. x->x+s),{i,1,n-1}];
  7. poly]
  8. Table[FullSimplify[Coefficient[f[n]-m[n],x^(2^(n-1)-2 n)]],{n,5,7}]
Copy the Code

{-10240,1712128,-345899008}
有何规律?

手机版Mobile version|Leisure Math Forum

2025-4-21 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list