Forgot password
 Register account
View 139|Reply 3

[不等式] 三角形重心 关于角的一个不等式

[Copy link]

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-1-8 19:53 |Read mode
$$\cos \left(\frac{\angle GBA+\angle GCA}{2}\right)-\frac{1}{2} \sqrt{3} \cos \left(\frac{\angle GBA-\angle GCA}{2}\right)\geq 0$$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-1-8 19:59
题咋改了呢,我昨天明明记得是 sin 的

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-1-8 20:03
kuing 发表于 2025-1-8 11:59
题咋改了呢,我昨天明明记得是 sin 的
是等价的

从$\sin\angle GBA+\sin\angle GCA\le\frac2{\sqrt3}\sin(\angle GBA+\angle GCA)$
$$ 2 \sin \left(\frac{\angle GBA+\angle GCA}{2}\right) \cos \left(\frac{\angle GBA-\angle GCA}{2}\right) \leq \frac{2 \sin (\angle GBA+\angle GCA)}{\sqrt{3}} $$
分解出$\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)$
$$\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)\left(\cos \left(\frac{\angle GBA+\angle GCA}{2}\right)-\frac{1}{2} \sqrt{3} \cos \left(\frac{\angle GBA-\angle GCA}{2}\right)\right) \geq 0$$
除以$\sin\left(\frac{\angle GBA+\angle GCA}{2}\right)>0$
$$\cos \left(\frac{\angle GBA+\angle GCA}{2}\right)-\frac{1}{2} \sqrt{3} \cos \left(\frac{\angle GBA-\angle GCA}{2}\right)\geq 0$$

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-1-9 17:42
kuing 发表于 2025-1-8 11:59
题咋改了呢,我昨天明明记得是 sin 的
是尝试化简了。

这道题如何证明呢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:10 GMT+8

Powered by Discuz!

Processed in 0.013650 seconds, 26 queries