Forgot password?
 Create new account
View 156|Reply 1

这个能求吗

[Copy link]

9

Threads

2

Posts

82

Credits

Credits
82

Show all posts

溦澜居士 Posted at 2025-1-14 12:32:21 From the mobile phone |Read mode
能求的话具体的值是多少
Screenshot_2025_0114_122525.png

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2025-1-15 03:10:09
我猜测是没法求出精确值的,但近似值可以搞出来

\[\mbox{原式}=\sum_{k=1}^\infty\left(\arccos(\frac{1}{2^{2k}})-\arccos(\frac{1}{2^{2k-1}})\right)\]
\[=\sum_{k=1}^\infty\left(\arcsin(\frac{1}{2^{2k-1}})-\arcsin(\frac{1}{2^{2k}})\right)\]

考察函数
\[f(x)=\arcsin(2x)-\arcsin(x)\]
泰勒展开会得到
\[f(x)=\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2}\frac{(2x)^{2i+1}}{2i+1}-\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
\[=\sum_{i=0}^\infty\frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
那么
\[\sum_{k=1}^\infty f(\frac{1}{2^{2k}})=\mbox{原式}=\sum_{k=1}^\infty \sum_{i=0}^\infty\frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
\[=\sum_{i=0}^\infty \frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2(2i+1)}\sum_{k=1}^\infty (\frac{1}{2^{2k}})^{2i+1}\]
\[=\sum_{i=0}^\infty \frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2(2i+1)}\cdot\frac{1}{2^{2(2i+1)}-1}\]
\[=\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2(2i+1)(2^{2i+1}-1)}\]
有这个级数就可以计算到任意精度了

\[=\frac{1}{3}+\frac{1}{54}+\frac{1}
{440}+\frac{5}{14448}+...\approx 0.3545\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list