Forgot password
 Register account
View 255|Reply 1

这个能求吗

[Copy link]

11

Threads

4

Posts

1

Reputation

Show all posts

溦澜居士 posted 2025-1-14 12:32 from mobile |Read mode
Last edited by hbghlyj 2025-4-27 02:48\[
\lim_{n \to\infty} \sup \sum_{k=1}^n(-1)^k \arccos \frac{1}{2^k}
\]

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2025-1-15 03:10
我猜测是没法求出精确值的,但近似值可以搞出来

\[\mbox{原式}=\sum_{k=1}^\infty\left(\arccos(\frac{1}{2^{2k}})-\arccos(\frac{1}{2^{2k-1}})\right)\]
\[=\sum_{k=1}^\infty\left(\arcsin(\frac{1}{2^{2k-1}})-\arcsin(\frac{1}{2^{2k}})\right)\]

考察函数
\[f(x)=\arcsin(2x)-\arcsin(x)\]
泰勒展开会得到
\[f(x)=\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2}\frac{(2x)^{2i+1}}{2i+1}-\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
\[=\sum_{i=0}^\infty\frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
那么
\[\sum_{k=1}^\infty f(\frac{1}{2^{2k}})=\mbox{原式}=\sum_{k=1}^\infty \sum_{i=0}^\infty\frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2}\frac{x^{2i+1}}{2i+1}\]
\[=\sum_{i=0}^\infty \frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2(2i+1)}\sum_{k=1}^\infty (\frac{1}{2^{2k}})^{2i+1}\]
\[=\sum_{i=0}^\infty \frac{(2^{2i+1}-1)(2i)!}{2^{2i}(i!)^2(2i+1)}\cdot\frac{1}{2^{2(2i+1)}-1}\]
\[=\sum_{i=0}^\infty\frac{(2i)!}{2^{2i}(i!)^2(2i+1)(2^{2i+1}-1)}\]
有这个级数就可以计算到任意精度了

\[=\frac{1}{3}+\frac{1}{54}+\frac{1}
{440}+\frac{5}{14448}+...\approx 0.3545\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:54 GMT+8

Powered by Discuz!

Processed in 0.019794 seconds, 26 queries